insulin exocytosis
Recently Published Documents


TOTAL DOCUMENTS

124
(FIVE YEARS 16)

H-INDEX

34
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Isabella Marinelli ◽  
Patrick A. Fletcher ◽  
Arthur S. Sherman ◽  
Leslie S. Satin ◽  
Richard Bertram

Insulin is secreted in a pulsatile pattern, with important physiological ramifications. In pancreatic β-cells, which are the cells that synthesize insulin, insulin exocytosis is elicited by pulses of elevated intracellular Ca2+ initiated by bursts of electrical activity. In parallel with these electrical and Ca2+ oscillations are oscillations in metabolism, and the periods of all of these oscillatory processes are similar. A key question that remains unresolved is whether the electrical oscillations are responsible for the metabolic oscillations via the effects of Ca2+, or whether the metabolic oscillations are responsible for the electrical oscillations due to the effects of ATP on ATP-sensitive ion channels? Mathematical modeling is a useful tool for addressing this and related questions as modeling can aid in the design of well-focused experiments that can test the predictions of particular models and subsequently be used to improve the models in an iterative fashion. In this article, we discuss a recent mathematical model, the Integrated Oscillator Model (IOM), that was the product of many years of development. We use the model to demonstrate that the relationship between calcium and metabolism in beta cells is symbiotic: in some contexts, the electrical oscillations drive the metabolic oscillations, while in other contexts it is the opposite. We provide new insights regarding these results and illustrate that what might at first appear to be contradictory data are actually compatible when viewed holistically with the IOM.


2021 ◽  
pp. 114821
Author(s):  
Belinda Yau ◽  
Samantha Hocking ◽  
Sofianos Andrikopoulos ◽  
Melkam Alamerew Kebede

2021 ◽  
Author(s):  
Xiaozhe Zhang ◽  
Na Li ◽  
Jun Zhang ◽  
Yanshen Zhang ◽  
Xiaoli Yang ◽  
...  

Author(s):  
Nour Mesto ◽  
Danielle Bailbe ◽  
Myriam Eskandar ◽  
Gaëlle Pommier ◽  
Stéphanie Gil ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Soujanya S. Karanth ◽  
Shuofei Sun ◽  
Huanjing Bi ◽  
Kaiming Ye ◽  
Sha Jin

AbstractIn vitro differentiation of human induced pluripotent stem cells (iPSCs) into functional islets holds immense potential to create an unlimited source of islets for diabetes research and treatment. A continuous challenge in this field is to generate glucose-responsive mature islets. We herein report a previously undiscovered angiopoietin signal for in vitro islet development. We revealed, for the first time, that angiopoietins, including angiopoietin-1 (Ang1) and angiopoietin-2 (Ang2) permit the generation of islets from iPSCs with elevated glucose responsiveness, a hallmark of mature islets. Angiopoietin-stimulated islets exhibited glucose synchronized calcium ion influx in repetitive glucose challenges. Moreover, Ang2 augmented the expression of all islet hormones, including insulin, glucagon, somatostatin, and pancreatic polypeptide; and β cell transcription factors, including NKX6.1, MAFA, UCN3, and PDX1. Furthermore, we showed that the Ang2 stimulated islets were able to regulate insulin exocytosis through actin-filament polymerization and depolymerization upon glucose challenge, presumably through the CDC42-RAC1-gelsolin mediated insulin secretion signaling pathway. We also discovered the formation of endothelium within the islets under Ang2 stimulation. These results strongly suggest that angiopoietin acts as a signaling molecule to endorse in vitro islet development from iPSCs.


2021 ◽  
Author(s):  
Yoshiko Matsumoto Ikushima ◽  
Motoharu Awazawa ◽  
Naoki Kobayashi ◽  
Sho Osonoi ◽  
Seiichi Takemiya ◽  
...  

In diabetic pathology, insufficiency in β-cell mass unable to meet peripheral insulin demand and functional defects of individual β cells to produce insulin are often concurrently observed, collectively causing hyperglycemia. Here we show that the phosphorylation of ERK1/2 is significantly decreased in the islets of <i>db/db</i> mice as well as in those of a cohort of subjects with type 2 diabetes. In mice with abrogation of ERK signaling in pancreatic β cells through deletion of <i>Mek1</i> and <i>Mek2</i>, glucose intolerance aggravates under high-fat diet-fed conditions due to insufficient insulin production with lower β-cell proliferation and reduced β-cell mass, while in individual β cells dampening of the number of insulin exocytosis events is observed, with the molecules involved in insulin exocytosis being less phosphorylated. These data reveal bifunctional roles for MEK/ERK signaling in β cells for glucose homeostasis, i.e., in regulating β-cell mass as well as in controlling insulin exocytosis in individual β cells, thus providing not only a novel perspective for the understanding of diabetes pathophysiology but also a potential clue for new drug development for diabetes treatment.


2021 ◽  
Author(s):  
Yoshiko Matsumoto Ikushima ◽  
Motoharu Awazawa ◽  
Naoki Kobayashi ◽  
Sho Osonoi ◽  
Seiichi Takemiya ◽  
...  

In diabetic pathology, insufficiency in β-cell mass unable to meet peripheral insulin demand and functional defects of individual β cells to produce insulin are often concurrently observed, collectively causing hyperglycemia. Here we show that the phosphorylation of ERK1/2 is significantly decreased in the islets of <i>db/db</i> mice as well as in those of a cohort of subjects with type 2 diabetes. In mice with abrogation of ERK signaling in pancreatic β cells through deletion of <i>Mek1</i> and <i>Mek2</i>, glucose intolerance aggravates under high-fat diet-fed conditions due to insufficient insulin production with lower β-cell proliferation and reduced β-cell mass, while in individual β cells dampening of the number of insulin exocytosis events is observed, with the molecules involved in insulin exocytosis being less phosphorylated. These data reveal bifunctional roles for MEK/ERK signaling in β cells for glucose homeostasis, i.e., in regulating β-cell mass as well as in controlling insulin exocytosis in individual β cells, thus providing not only a novel perspective for the understanding of diabetes pathophysiology but also a potential clue for new drug development for diabetes treatment.


2021 ◽  
Author(s):  
Yoshiko Matsumoto Ikushima ◽  
Motoharu Awazawa ◽  
Naoki Kobayashi ◽  
Sho Osonoi ◽  
Seiichi Takemiya ◽  
...  

In diabetic pathology, insufficiency in β-cell mass unable to meet peripheral insulin demand and functional defects of individual β cells to produce insulin are often concurrently observed, collectively causing hyperglycemia. Here we show that the phosphorylation of ERK1/2 is significantly decreased in the islets of <i>db/db</i> mice as well as in those of a cohort of subjects with type 2 diabetes. In mice with abrogation of ERK signaling in pancreatic β cells through deletion of <i>Mek1</i> and <i>Mek2</i>, glucose intolerance aggravates under high-fat diet-fed conditions due to insufficient insulin production with lower β-cell proliferation and reduced β-cell mass, while in individual β cells dampening of the number of insulin exocytosis events is observed, with the molecules involved in insulin exocytosis being less phosphorylated. These data reveal bifunctional roles for MEK/ERK signaling in β cells for glucose homeostasis, i.e., in regulating β-cell mass as well as in controlling insulin exocytosis in individual β cells, thus providing not only a novel perspective for the understanding of diabetes pathophysiology but also a potential clue for new drug development for diabetes treatment.


2020 ◽  
Vol 134 (12) ◽  
pp. 1449-1456
Author(s):  
Parimala Narne

Abstract Hepatitis C virus (HCV) infection and chronic hepatitis C (CHC) are associated with a measurable risk of insulin resistance (IR)/impaired glucose tolerance (IGT)/diabetes mellitus (DM). While loss of hepatic endocrine function contributes to liver cirrhosis in diabetic patients, onset and progression of IR/IGT to diabetes and exacerbation of incident hyperglycemia are ostensibly linked with chronic HCV infection. In this regard, the study by Chen J et al. appearing in Clinical Science (2020) (134(5) https://doi.org/10.1042/CS20190900) attempts to understand the mechanisms underlying the savaging effects of chronic HCV infection on insulin-producing pancreatic β-cells and hence diabetic onset. The study investigated the role of mitogen-activated protein kinase (MAPK) p38δ–protein kinase D (PKD)–golgi complex axis in impacting insulin exocytosis. It was inferred that an insulin secretory defect of pancreatic β-cells, owing to disrupted insulin exocytosis, to an extent explains β-cell dysfunction in HCV-infected or CHC milieu. HCV infection negatively regulates first-phase and second-phase insulin secretion by impinging on PKD-dependent insulin secretory granule fission at trans-golgi network and insulin secretory vesicle membrane fusion events. This commentary highlights the study in question, that deciphered the contribution of p38δ MAPK–PKD–golgi complex axis to β-cell dysfunction in CHC milieu. This pivotal axis proffers a formidable therapeutic opportunity for alleviation of double burden of glucose abnormalities/DM and CHC.


JCI Insight ◽  
2020 ◽  
Vol 5 (3) ◽  
Author(s):  
Tao Liang ◽  
Tairan Qin ◽  
Fei Kang ◽  
Youhou Kang ◽  
Li Xie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document