scholarly journals Gene expression levels tune germline mutation rates through the compound effects of transcription-coupled repair and damage

Author(s):  
Bo Xia ◽  
Itai Yanai

Abstract Of all mammalian organs, the testis has long been observed to have the most diverse gene expression profile. To account for this widespread gene expression, we have proposed a mechanism termed ‘transcriptional scanning’, which reduces germline mutation rates through transcription-coupled repair (TCR). Our hypothesis contrasts with an earlier observation that mutation rates are overall positively correlated with gene expression levels in yeast, implying that transcription is mutagenic due to transcription-coupled damage (TCD). Here we report evidence that the compound effects of both TCR and TCD during spermatogenesis tune germline mutation rates in human, with TCR dominating in most genes, thus supporting the transcriptional scanning hypothesis. Our analyses address potentially confounding factors, distinguish the differential mutagenic effects acting on the highly expressed genes and the low-to-moderately expressed genes, and resolve concerns relating to the validation of the results using a de novo mutation dataset. We also discuss the theoretical possibility of transcriptional scanning hypothesis from an evolutionary perspective. Together, these analyses support a model by which the coupling of transcription-coupled repair and damage establishes the pattern of germline mutation rates and provide an evolutionary explanation for widespread gene expression during spermatogenesis.

2016 ◽  
Vol 113 (41) ◽  
pp. E6117-E6125 ◽  
Author(s):  
Zhipeng Zhou ◽  
Yunkun Dang ◽  
Mian Zhou ◽  
Lin Li ◽  
Chien-hung Yu ◽  
...  

Codon usage biases are found in all eukaryotic and prokaryotic genomes, and preferred codons are more frequently used in highly expressed genes. The effects of codon usage on gene expression were previously thought to be mainly mediated by its impacts on translation. Here, we show that codon usage strongly correlates with both protein and mRNA levels genome-wide in the filamentous fungus Neurospora. Gene codon optimization also results in strong up-regulation of protein and RNA levels, suggesting that codon usage is an important determinant of gene expression. Surprisingly, we found that the impact of codon usage on gene expression results mainly from effects on transcription and is largely independent of mRNA translation and mRNA stability. Furthermore, we show that histone H3 lysine 9 trimethylation is one of the mechanisms responsible for the codon usage-mediated transcriptional silencing of some genes with nonoptimal codons. Together, these results uncovered an unexpected important role of codon usage in ORF sequences in determining transcription levels and suggest that codon biases are an adaptation of protein coding sequences to both transcription and translation machineries. Therefore, synonymous codons not only specify protein sequences and translation dynamics, but also help determine gene expression levels.


2021 ◽  
Vol 22 (S11) ◽  
Author(s):  
Sung-Gwon Lee ◽  
Dokyun Na ◽  
Chungoo Park

Abstract Background Lately, high-throughput RNA sequencing has been extensively used to elucidate the transcriptome landscape and dynamics of cell types of different species. In particular, for most non-model organisms lacking complete reference genomes with high-quality annotation of genetic information, reference-free (RF) de novo transcriptome analyses, rather than reference-based (RB) approaches, are widely used, and RF analyses have substantially contributed toward understanding the mechanisms regulating key biological processes and functions. To date, numerous bioinformatics studies have been conducted for assessing the workflow, production rate, and completeness of transcriptome assemblies within and between RF and RB datasets. However, the degree of consistency and variability of results obtained by analyzing gene expression levels through these two different approaches have not been adequately documented. Results In the present study, we evaluated the differences in expression profiles obtained with RF and RB approaches and revealed that the former tends to be satisfactorily replaced by the latter with respect to transcriptome repertoires, as well as from a gene expression quantification perspective. In addition, we urge cautious interpretation of these findings. Several genes that are lowly expressed, have long coding sequences, or belong to large gene families must be validated carefully, whenever gene expression levels are calculated using the RF method. Conclusions Our empirical results indicate important contributions toward addressing transcriptome-related biological questions in non-model organisms.


2020 ◽  
Author(s):  
Jingmeng Sun ◽  
Zhuoming Wang ◽  
Weiyu Zhang

ABSTRACTRana chensinensis (R. chensinensis) is an important wild animal found in China, and a precious animal in Chinese herbal medicine. R. chensinensis is rich in polyunsaturated fatty acids (PUFAS). However, information regarding the genes of R. chensinensis related to the synthesis of PUFAs is limited. To identify these genes, we performed Illumina sequencing of R. chensinensis RNA from the skin and Oviductus Ranae. The Illumina Hiseq 2000 platform was used for sequencing, and the I-Sanger cloud platform was used for transcriptome de novo sequencing and information analysis to generate a database. Through the database generated by the transcriptome and the pathway map, we found the pathway for the biosynthesis of R. chensinensis PUFAs. The Pearson coefficient method was used to analyze the correlation of gene expression levels between samples, and the similarity of gene expression in different tissues and the characteristics in their respective tissues were found. Twelve differentially expressed genes of PUFA in skin and Oviductus Ranae were screened by gene differential expression analysis. The 12 unigenes expression levels of qRT-PCR were used to verify the results of gene expression levels consistent with transcriptome analysis. Based on the sequencing, key genes involved in biosynthesis of unsaturated fatty acids were isolated, which established a biotechnological platform for further research on R. chensinensis.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 854
Author(s):  
Yishu Wang ◽  
Lingyun Xu ◽  
Dongmei Ai

DNA methylation is an important regulator of gene expression that can influence tumor heterogeneity and shows weak and varying expression levels among different genes. Gastric cancer (GC) is a highly heterogeneous cancer of the digestive system with a high mortality rate worldwide. The heterogeneous subtypes of GC lead to different prognoses. In this study, we explored the relationships between DNA methylation and gene expression levels by introducing a sparse low-rank regression model based on a GC dataset with 375 tumor samples and 32 normal samples from The Cancer Genome Atlas database. Differences in the DNA methylation levels and sites were found to be associated with differences in the expressed genes related to GC development. Overall, 29 methylation-driven genes were found to be related to the GC subtypes, and in the prognostic model, we explored five prognoses related to the methylation sites. Finally, based on a low-rank matrix, seven subgroups were identified with different methylation statuses. These specific classifications based on DNA methylation levels may help to account for heterogeneity and aid in personalized treatments.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Weitong Cui ◽  
Huaru Xue ◽  
Lei Wei ◽  
Jinghua Jin ◽  
Xuewen Tian ◽  
...  

Abstract Background RNA sequencing (RNA-Seq) has been widely applied in oncology for monitoring transcriptome changes. However, the emerging problem that high variation of gene expression levels caused by tumor heterogeneity may affect the reproducibility of differential expression (DE) results has rarely been studied. Here, we investigated the reproducibility of DE results for any given number of biological replicates between 3 and 24 and explored why a great many differentially expressed genes (DEGs) were not reproducible. Results Our findings demonstrate that poor reproducibility of DE results exists not only for small sample sizes, but also for relatively large sample sizes. Quite a few of the DEGs detected are specific to the samples in use, rather than genuinely differentially expressed under different conditions. Poor reproducibility of DE results is mainly caused by high variation of gene expression levels for the same gene in different samples. Even though biological variation may account for much of the high variation of gene expression levels, the effect of outlier count data also needs to be treated seriously, as outlier data severely interfere with DE analysis. Conclusions High heterogeneity exists not only in tumor tissue samples of each cancer type studied, but also in normal samples. High heterogeneity leads to poor reproducibility of DEGs, undermining generalization of differential expression results. Therefore, it is necessary to use large sample sizes (at least 10 if possible) in RNA-Seq experimental designs to reduce the impact of biological variability and DE results should be interpreted cautiously unless soundly validated.


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 92
Author(s):  
Joon Seon Lee ◽  
Lexuan Gao ◽  
Laura Melissa Guzman ◽  
Loren H. Rieseberg

Approximately 10% of agricultural land is subject to periodic flooding, which reduces the growth, survivorship, and yield of most crops, reinforcing the need to understand and enhance flooding resistance in our crops. Here, we generated RNA-Seq data from leaf and root tissue of domesticated sunflower to explore differences in gene expression and alternative splicing (AS) between a resistant and susceptible cultivar under both flooding and control conditions and at three time points. Using a combination of mixed model and gene co-expression analyses, we were able to separate general responses of sunflower to flooding stress from those that contribute to the greater tolerance of the resistant line. Both cultivars responded to flooding stress by upregulating expression levels of known submergence responsive genes, such as alcohol dehydrogenases, and slowing metabolism-related activities. Differential AS reinforced expression differences, with reduced AS frequencies typically observed for genes with upregulated expression. Significant differences were found between the genotypes, including earlier and stronger upregulation of the alcohol fermentation pathway and a more rapid return to pre-flooding gene expression levels in the resistant genotype. Our results show how changes in the timing of gene expression following both the induction of flooding and release from flooding stress contribute to increased flooding tolerance.


Sign in / Sign up

Export Citation Format

Share Document