capacitively coupled plasma
Recently Published Documents


TOTAL DOCUMENTS

348
(FIVE YEARS 50)

H-INDEX

27
(FIVE YEARS 2)

2021 ◽  
Vol 39 (6) ◽  
pp. 063002
Author(s):  
Xifeng Wang ◽  
Hyunjae Lee ◽  
Sang Ki Nam ◽  
Mark J. Kushner

2021 ◽  
Vol 30 (6) ◽  
pp. 176-182
Author(s):  
In Ho Seong ◽  
Jang Jae Lee ◽  
Chul Hee Cho ◽  
Yeong Seok Lee ◽  
Si Jun Kim ◽  
...  

Author(s):  
Chenxu Wang ◽  
Guanjun Zhang ◽  
Bo Zhang ◽  
Yuhao Sun ◽  
Yanan Peng ◽  
...  

Abstract The flashover performance of insulating materials plays an important role in the development of high-voltage insulation systems. In this paper, silicone rubber(SIR) is modified by CF4 radio frequency capacitively coupled plasma(CCP) for the improvement of surface insulation performance. The discharge mode and active particles of CCP are diagnosed by the digital single lens reflex and spectrometer. Scanning electron microscopy and X-ray photoelectron spectroscopy is used for the surface physicochemical properties of samples, while the surface charge dissipation, charge accumulation measurement and flashover test are applied for the surface electrical characteristics. Experimental results show that the fluorocarbon groups can be grafted and the surface roughness increase after plasma treatment. Besides, the surface charge dissipation is decelerated and the positive charge accumulation is obviously inhibited for the treated samples. Furthermore, the surface flashover voltage can be increased by 26.67% after 10-minute treatment. It is considered that strong electron affinity of C-F and increased surface roughness can contribute to deepen surface traps, which not only inhibits the development of secondary electron emission avalanche, but also alleviates the surface charge accumulation and finally improve the surface flashover voltage of SIR.


Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1041
Author(s):  
Hwanyeol Park ◽  
Ho Jun Kim

The rapid and uniform growth of hydrogenated silicon (Si:H) films is essential for the manufacturing of future semiconductor devices; therefore, Si:H films are mainly deposited using SiH4-based plasmas. An increase in the pressure of the mixture gas has been demonstrated to increase the deposition rate in the SiH4-based plasmas. The fact that SiH4 more efficiently generates Si2H6 at higher gas pressures requires a theoretical investigation of the reactivity of Si2H6 on various surfaces. Therefore, we conducted first-principles density functional theory (DFT) calculations to understand the surface reactivity of Si2H6 on both hydrogenated (H-covered) Si(001) and Si(111) surfaces. The reactivity of Si2H6 molecules on hydrogenated Si surfaces was more energetically favorable than on clean Si surfaces. We also found that the hydrogenated Si(111) surface is the most efficient surface because the dissociation of Si2H6 on the hydrogenated Si(111) surface are thermodynamically and kinetically more favorable than those on the hydrogenated Si(001) surface. Finally, we simulated the SiH4/He capacitively coupled plasma (CCP) discharges for Si:H films deposition.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1004
Author(s):  
Ho Jun Kim ◽  
Jung Hwan Yoon

Defect formation in the deposition of thin films for semiconductors is not yet sufficiently understood. In a showerhead-type capacitively coupled plasma (CCP) deposition reactor, the showerhead acts as both the gas distributor and the electrode. We used computational fluid dynamics to investigate ways to enhance cleanliness by analyzing the particle deposition induced by the showerhead electrode in a CCP reactor. We analyzed particle transport phenomena using a three-dimensional complex geometry, whereas SiH4/He discharges were simulated in a two-dimensional simplified geometry. The process volume was located between the RF-powered showerhead and the grounded heater. We demonstrated that the efficient transportation of particles with a radius exceeding 1 μm onto the heater is facilitated by acceleration inside the showerhead holes. Because the available space in which to flow inside the showerhead is constricted, high gas velocities within the showerhead holes can accelerate particles and lead to inertia-enhanced particle deposition. The effect of the electrode spacing on the deposition of particles generated in plasma discharges was also investigated. Smaller electrode spacing promoted the deposition of particles fed from the showerhead on the heater, whereas larger electrode spacing facilitated the deposition of particles generated in plasma discharges on the heater.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 999
Author(s):  
Ho Jun Kim

Increasing the productivity of a showerhead-type capacitively coupled plasma (CCP) reactor requires an in-depth understanding of various physical phenomena related to the showerhead, which is not only responsible for gas distribution, but also acts as the electrode. Thus, we investigated how to enhance the cleanliness and deposition rate by studying the multiple roles of the showerhead electrode in a CCP reactor. We analyzed the gas transport in a three-dimensional complex geometry, and the SiH4/He discharges were simulated in a two-dimensional simplified geometry. The process volume was installed between the showerhead electrode (radio frequency powered) and the heater electrode (grounded). Our aim of research was to determine the extent to which the heated showerhead contributed to increasing the deposition rate and to reducing the size of the large particles generated during processing. The temperature of the showerhead was increased to experimentally measure the number of particles transported onto the heater to demonstrate the effects thereof on the decrease in contamination. The number of particles larger than 45 nm decreased by approximately 93% when the showerhead temperature increased from 373 to 553 K.


Sign in / Sign up

Export Citation Format

Share Document