scholarly journals Analysis of Rotor Position Detection Performance According to the Frequency of Square Waveform Voltage in the Harmonic Injection Sensorless Method through HILS

Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2267
Author(s):  
Kyeong-Rok Moon ◽  
Dong-Myung Lee

In this paper, the rotor position estimation performance of the sensorless scheme for permanent magnet synchronous motors (PMSMs) implemented through the injection of high-frequency square-wave voltage according to the frequency of the square-wave voltage is presented through HILS (Hardware In the Loop Simulation) experiments. An inverter using an IGBT device usually has a switching frequency of around 15 kHz. On the other hand, GaN devices that can be switched on and off at frequencies higher than 100 kHz have been recently developed, and research is being actively conducted to apply GaNs to a variable speed system. The purpose of this study is to conduct HILS experiments to analysis the rotor position estimation ability of the sensorless technique in cases where a high switching frequency was applied, such as GaN devices, with that of a system having a usual switching frequency, such as IGBT. In the HILS system used in this study, an inverter and motor model implemented with Simulink are located in a real-time simulator. A sensorless motor control method was implemented with an FPGA control board, which includes a PWM interrupt service routine of 100 kHz frequency and a harmonic injection and position detection algorithm. The HILS experiments show rotor position detection errors according to the various frequency of the harmonic voltage injected for estimating the rotor position with a PWM frequency of 100 kHz cases. According to the experimental results, good position estimation was possible not only when the harmonic of 10 kHz corresponding to 1/10 of the PWM frequency was injected, but also when the harmonic of 1 kHz corresponding to 1/100 of the PWM frequency was injected. The experiments suggest that position estimation errors decrease as the frequency of the harmonic voltage increases, and, based on the foregoing, it is thought that the application of a GaN device capable of realizing a high switching frequency in a variable speed drive system can be another advantage.

Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4776
Author(s):  
Shuang Wang ◽  
Jianfei Zhao ◽  
Kang Yang

In this paper, a new sensorless control scheme with the injection of a high-frequency square-wave voltage of an interior permanent-magnet synchronous motor (IPMSM) at low- and zero-speed operation is proposed. Conventional schemes may face the problems of obvious current sampling noise and slow identification in the process of magnetic polarity detection at zero speed operation, and the effects of inverter voltage error on the rotor position estimation accuracy at low speed operation. Based on the principle analysis of d-axis magnetic circuit characteristics, a method for determining the direction of magnetic polarity of d-axis two-opposite DC voltage offset by uninterruptible square-wave injection is proposed, which is fast in convergence rate of magnetic polarity detection and more distinct. In addition, the strategy injects a two-opposite high-frequency square-wave voltage vectors other than the one voltage vector into the estimated synchronous reference frame (SRF), which can reduce the effects of inverter voltage error on the rotor position estimation accuracy. With this approach, low-pass filter (LPF) and band-pass filter (BPF), which are used to obtain the fundamental current component and high-frequency current response with rotor position information respectively in the conventional sensorless control, are removed to simplify the signal process for estimating the rotor position and further improve control bandwidth. Finally, the experimental results on an IPMSM drive platform indicate that the rotor position with good steady state and dynamic performance can be obtained accurately at low-and zero-speed operation with the sensorless control strategy.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1254
Author(s):  
Gianluca Brando ◽  
Adolfo Dannier ◽  
Ivan Spina

This paper focuses on the performance analysis of a sensorless control for a Doubly Fed Induction Generator (DFIG) in grid-connected operation for turbine-based wind generation systems. With reference to a conventional stator flux based Field Oriented Control (FOC), a full-order adaptive observer is implemented and a criterion to calculate the observer gain matrix is provided. The observer provides the estimated stator flux and an estimation of the rotor position is also obtained through the measurements of stator and rotor phase currents. Due to parameter inaccuracy, the rotor position estimation is affected by an error. As a novelty of the discussed approach, the rotor position estimation error is considered as an additional machine parameter, and an error tracking procedure is envisioned in order to track the DFIG rotor position with better accuracy. In particular, an adaptive law based on the Lyapunov theory is implemented for the tracking of the rotor position estimation error, and a current injection strategy is developed in order to ensure the necessary tracking sensitivity around zero rotor voltages. The roughly evaluated rotor position can be corrected by means of the tracked rotor position estimation error, so that the corrected rotor position is sent to the FOC for the necessary rotating coordinate transformation. An extensive experimental analysis is carried out on an 11 kW, 4 poles, 400 V/50 Hz induction machine testifying the quality of the sensorless control.


Sign in / Sign up

Export Citation Format

Share Document