scholarly journals Detecting Entanglement Structure in Continuous Many-Body Quantum Systems

2022 ◽  
Vol 128 (2) ◽  
Author(s):  
Philipp Kunkel ◽  
Maximilian Prüfer ◽  
Stefan Lannig ◽  
Robin Strohmaier ◽  
Martin Gärttner ◽  
...  
Science ◽  
2019 ◽  
Vol 364 (6437) ◽  
pp. 260-263 ◽  
Author(s):  
Tiff Brydges ◽  
Andreas Elben ◽  
Petar Jurcevic ◽  
Benoît Vermersch ◽  
Christine Maier ◽  
...  

Entanglement is a key feature of many-body quantum systems. Measuring the entropy of different partitions of a quantum system provides a way to probe its entanglement structure. Here, we present and experimentally demonstrate a protocol for measuring the second-order Rényi entropy based on statistical correlations between randomized measurements. Our experiments, carried out with a trapped-ion quantum simulator with partition sizes of up to 10 qubits, prove the overall coherent character of the system dynamics and reveal the growth of entanglement between its parts, in both the absence and presence of disorder. Our protocol represents a universal tool for probing and characterizing engineered quantum systems in the laboratory, which is applicable to arbitrary quantum states of up to several tens of qubits.


2020 ◽  
Vol 117 (41) ◽  
pp. 25402-25406
Author(s):  
D. Zhu ◽  
S. Johri ◽  
N. M. Linke ◽  
K. A. Landsman ◽  
C. Huerta Alderete ◽  
...  

Finite-temperature phases of many-body quantum systems are fundamental to phenomena ranging from condensed-matter physics to cosmology, yet they are generally difficult to simulate. Using an ion trap quantum computer and protocols motivated by the quantum approximate optimization algorithm (QAOA), we generate nontrivial thermal quantum states of the transverse-field Ising model (TFIM) by preparing thermofield double states at a variety of temperatures. We also prepare the critical state of the TFIM at zero temperature using quantum–classical hybrid optimization. The entanglement structure of thermofield double and critical states plays a key role in the study of black holes, and our work simulates such nontrivial structures on a quantum computer. Moreover, we find that the variational quantum circuits exhibit noise thresholds above which the lowest-depth QAOA circuits provide the best results.


Nanophotonics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1243-1269 ◽  
Author(s):  
Chenglong You ◽  
Apurv Chaitanya Nellikka ◽  
Israel De Leon ◽  
Omar S. Magaña-Loaiza

AbstractA single photon can be coupled to collective charge oscillations at the interfaces between metals and dielectrics forming a single surface plasmon. The electromagnetic near-fields induced by single surface plasmons offer new degrees of freedom to perform an exquisite control of complex quantum dynamics. Remarkably, the control of quantum systems represents one of the most significant challenges in the field of quantum photonics. Recently, there has been an enormous interest in using plasmonic systems to control multiphoton dynamics in complex photonic circuits. In this review, we discuss recent advances that unveil novel routes to control multiparticle quantum systems composed of multiple photons and plasmons. We describe important properties that characterize optical multiparticle systems such as their statistical quantum fluctuations and correlations. In this regard, we discuss the role that photon-plasmon interactions play in the manipulation of these fundamental properties for multiparticle systems. We also review recent works that show novel platforms to manipulate many-body light-matter interactions. In this spirit, the foundations that will allow nonexperts to understand new perspectives in multiparticle quantum plasmonics are described. First, we discuss the quantum statistical fluctuations of the electromagnetic field as well as the fundamentals of plasmonics and its quantum properties. This discussion is followed by a brief treatment of the dynamics that characterize complex multiparticle interactions. We apply these ideas to describe quantum interactions in photonic-plasmonic multiparticle quantum systems. We summarize the state-of-the-art in quantum devices that rely on plasmonic interactions. The review is concluded with our perspective on the future applications and challenges in this burgeoning field.


2018 ◽  
Vol 98 (2) ◽  
Author(s):  
I. Vakulchyk ◽  
I. Yusipov ◽  
M. Ivanchenko ◽  
S. Flach ◽  
S. Denisov

Science ◽  
2018 ◽  
Vol 363 (6425) ◽  
pp. 379-382 ◽  
Author(s):  
Peter T. Brown ◽  
Debayan Mitra ◽  
Elmer Guardado-Sanchez ◽  
Reza Nourafkan ◽  
Alexis Reymbaut ◽  
...  

Strong interactions in many-body quantum systems complicate the interpretation of charge transport in such materials. To shed light on this problem, we study transport in a clean quantum system: ultracold lithium-6 in a two-dimensional optical lattice, a testing ground for strong interaction physics in the Fermi-Hubbard model. We determine the diffusion constant by measuring the relaxation of an imposed density modulation and modeling its decay hydrodynamically. The diffusion constant is converted to a resistivity by using the Nernst-Einstein relation. That resistivity exhibits a linear temperature dependence and shows no evidence of saturation, two characteristic signatures of a bad metal. The techniques we developed in this study may be applied to measurements of other transport quantities, including the optical conductivity and thermopower.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1796
Author(s):  
Klaus Ziegler

The diagonal elements of the time correlation matrix are used to probe closed quantum systems that are measured at random times. This enables us to extract two distinct parts of the quantum evolution, a recurrent part and an exponentially decaying part. This separation is strongly affected when spectral degeneracies occur, for instance, in the presence of spontaneous symmetry breaking. Moreover, the slowest decay rate is determined by the smallest energy level spacing, and this decay rate diverges at the spectral degeneracies. Probing the quantum evolution with the diagonal elements of the time correlation matrix is discussed as a general concept and tested in the case of a bosonic Josephson junction. It reveals for the latter characteristic properties at the transition to Hilbert-space localization.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 486
Author(s):  
Thomás Fogarty ◽  
Miguel Ángel García-March ◽  
Lea F. Santos ◽  
Nathan L. Harshman

Interacting quantum systems in the chaotic domain are at the core of various ongoing studies of many-body physics, ranging from the scrambling of quantum information to the onset of thermalization. We propose a minimum model for chaos that can be experimentally realized with cold atoms trapped in one-dimensional multi-well potentials. We explore the emergence of chaos as the number of particles is increased, starting with as few as two, and as the number of wells is increased, ranging from a double well to a multi-well Kronig-Penney-like system. In this way, we illuminate the narrow boundary between integrability and chaos in a highly tunable few-body system. We show that the competition between the particle interactions and the periodic structure of the confining potential reveals subtle indications of quantum chaos for 3 particles, while for 4 particles stronger signatures are seen. The analysis is performed for bosonic particles and could also be extended to distinguishable fermions.


Quantum ◽  
2020 ◽  
Vol 4 ◽  
pp. 273 ◽  
Author(s):  
Daniel Nickelsen ◽  
Michael Kastner

We introduce structured random matrix ensembles, constructed to model many-body quantum systems with local interactions. These ensembles are employed to study equilibration of isolated many-body quantum systems, showing that rather complex matrix structures, well beyond Wigner's full or banded random matrices, are required to faithfully model equilibration times. Viewing the random matrices as connectivities of graphs, we analyse the resulting network of classical oscillators in Hilbert space with tools from network theory. One of these tools, called the maximum flow value, is found to be an excellent proxy for equilibration times. Since maximum flow values are less expensive to compute, they give access to approximate equilibration times for system sizes beyond those accessible by exact diagonalisation.


Sign in / Sign up

Export Citation Format

Share Document