european brown hare syndrome
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 4)

H-INDEX

16
(FIVE YEARS 0)

2022 ◽  
Author(s):  
Krishani D Perera ◽  
David K Johnson ◽  
Scott Lovell ◽  
William Groutas ◽  
Kyeong-Ok Chang ◽  
...  

Rabbit hemorrhagic disease (RHD) and European brown hare syndrome (EBHS) are highly contagious diseases caused by lagoviruses in the Caliciviridae family and mainly affect rabbits and hares, respectively. These infectious diseases are associated with high mortality and a serious threat to domesticated (farmed and pet) and wild rabbits and hares, including endangered species such as Riparian brush rabbits. In the US, only isolated cases of RHD had been reported until Spring 2020. However, RHD caused by RHD type 2 virus (RHDV2) was unexpectedly reported in April 2020 in New Mexico and has subsequently spread to several US states infecting wild rabbits and hares. Since it is almost impossible to control and eradicate the virus from wild animals, it is highly likely RHD will become endemic in the US. Vaccines are available for RHD, however, there is no specific treatment for these deadly diseases. RHDV and EBHSV encode a 3C-like protease (3CLpro), which is essential for virus replication and a promising target for antiviral drug development. We have previously generated focused small molecule libraries of 3CLpro inhibitors and demonstrated the in vitro potency and in vivo efficacy of some protease inhibitors against viruses that encode 3CLpro including caliciviruses and coronaviruses. Here we established the enzyme assay and cell-based assays for these uncultivable viruses to determine the in vitro activity of 3CLpro inhibitors, including GC376, a protease inhibitor being developed for feline infectious peritonitis, and identified potent inhibitors of RHDV1 and 2 and EBHSV. In addition, structure-activity relationship study and homology modelling of the 3CLpros and inhibitors revealed that lagoviruses share similar structural requirements for 3CLpro inhibition with other caliciviruses.


Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1999
Author(s):  
Andrzej Fitzner ◽  
Ewa Kwit ◽  
Wiesław Niedbalski ◽  
Ewelina Bigoraj ◽  
Andrzej Kęsy ◽  
...  

European brown hare syndrome (EBHS) is lethal to several species of free-living hares worldwide. The genetic characterization of its virus (EBHSV) strains in European circulation and epidemiological knowledge of EBHSV infections is not yet complete. The study determined the nucleotide sequences of the genomes of EBHSV strains from Poland and analyzed their genetic and phylogenetic relationships to a group of hare lagoviruses. The genome of five virus strains detected in Poland between 1992 and 2004 was obtained by RT-PCR and sequencing of the obtained amplicons. The genetic relationships of the EBHSV strains were analyzed using the full genome and VP60 gene sequences. Additionally, the amino acid sequence of the VP60 gene was analyzed to identify mutations specific to recognized EBHSV subgroups. Partial amplification of the virus open reading frame (ORF)1 and ORF2 regions obtained nearly complete nucleotide genome sequences of the EBHSV strains. Phylogenetic analysis placed them in a GII.1 cluster with other European strains related to nonpathogenic hare caliciviruses. VP60 gene analysis allocated these EBHSV strains to the G1.2, G2.2–2.3 or G3 virus genetic groups. The amino acid sequence differences in the entire genome ranged from 1.1 to 2.6%. Compared to a reference French EBHSV-GD strain, 22 variable amino acid sites were identified in the VP60 region of the Polish strains, but only six were in VP10. Single amino acid changes appeared in different sequence positions among Polish and other European virus strains from different genetic groups, as well as in VP10 sequences of nonpathogenic hare caliciviruses. The results of the study showed a high genetic homogeneity of EBHSV strains from Poland despite their different location occurrence and initial detection times. These strains are also phylogenetically closely related to other EBHSV strains circulating in Europe, likely confirming the slow evolutionary dynamics of this lagovirus species.


2021 ◽  
Author(s):  
Kevin P. Dalton ◽  
Ana Podadera ◽  
José Manuel Martin Alonso ◽  
Inés Calonge Sanz ◽  
Ángel Luis Álvarez Rodríguez ◽  
...  

Our understanding of molecular biology of the viruses that infect lagomorphs is largely limited to the leporipoxvirus myxoma virus (MYXV) and the lagoviruses rabbit haemorrhagic disease virus (RHDV) and European brown hare syndrome virus (EBHSV) that infect the European rabbit (Oryctolagus cuniculus) and the European brown hare (Lepus europaeus) respectively. Thanks to the great effort of historic surveillance studies and careful sample archiving, the molecular evolution of these viruses is being resolved. Although historically considered viruses that cause species specific diseases recent reports show that several lagomorphs may now face the threat of these maladies. The driving factors behind these changes has not been determined and the effect of these species jumps on lagomorph populations has yet to be seen. Lagomorphs are also affected by several other lesser studied viral diseases. In addition, recent metagenomic studies have led to the identification of novel lagomorph viruses the importance of these to lagomorph health remains to be fully determined. In this chapter we summarize molecular aspects of viruses that infect lagomorphs, paying particular attention to recent interspecies infections.


2018 ◽  
Vol 7 (22) ◽  
Author(s):  
Clément Droillard ◽  
Evelyne Lemaitre ◽  
Marina Chatel ◽  
Jean-Sébastien Guitton ◽  
Stéphane Marchandeau ◽  
...  

The first full-genome sequence of a hare calicivirus (HaCV), recently characterized as a novel member of the Caliciviridae, is described. This presumed nonpathogenic lagovirus is 7,433 nucleotides long, shows the same genomic organization as that of other lagoviruses, and has the highest nucleotide identity (79%) with pathogenic European brown hare syndrome viruses.


2018 ◽  
Author(s):  
Jackie E. Mahar ◽  
Robyn N. Hall ◽  
Mang Shi ◽  
Roslyn Mourant ◽  
Nina Huang ◽  
...  

AbstractOur knowledge of mammalian viruses has been strongly skewed toward those that cause disease in humans and animals. However, recent metagenomic studies indicate that most apparently healthy organisms carry viruses, and that these seemingly benign viruses may comprise the bulk of virus diversity. The bias toward studying viruses associated with overt disease is apparent in the lagoviruses (familyCaliciviridae) that infect rabbits and hares: although most attention has been directed toward the highly pathogenic members of this genus - the rabbit haemorrhagic disease virus and European brown hare syndrome virus - a number of benign lagoviruses have also been identified. To determine whether wild European brown hares in Australia might also carry undetected benign viruses, we used a meta-transcriptomics approach to explore the gut and liver RNA viromes of these invasive animals. This led to the discovery of three new lagoviruses. While one of the three viruses was only detected in a single hare, the other two viruses were detected in 20% of all hares tested. All three viruses were most closely related to other hare lagoviruses, but were highly distinct from both known viruses and each other. We also found evidence for complex recombination events in these viruses, which, combined with their phylogenetic distribution, suggests that there is likely extensive unsampled diversity in this genus. Additional metagenomic studies of hares and other species are clearly needed to fill gaps in the lagovirus phylogeny and hence better understand the evolutionary history of this important group of mammalian viruses.


2018 ◽  
Vol 117 ◽  
pp. 81-84
Author(s):  
Federica Di Profio ◽  
Irene Melegari ◽  
Vittorio Sarchese ◽  
Serena Robetto ◽  
Sandra Bermudez Sanchez ◽  
...  

2017 ◽  
Vol 73 (12) ◽  
pp. 811-818
Author(s):  
Andrzej Fitzner ◽  
Wiesław Niedbalski

Rabbit haemorrhagic disease (RHD) was first recognized in China in 1984. In Europe, the disease appeared in 1986 in Italy, and in the following years RHD was observed in many other European countries, including Poland in 1988. The disease is caused by RHD virus (RHDV), classified as a representative of the Lagovirus genus within the Caliciviridae family. Lagoviruses include the non-pathogenic rabbit calicivirus (RCV) and the European brown hare syndrome virus (EBHSV). There are three basic variants (subtypes) of pathogenic RHD viruses: classic (RHDV) and antigenic subtypes RHDVa and RHDV2 (RHDVb), distinguished on the basis of epidemiological characteristics, infectious properties and antigenic and genetic modifications. Phylogenetic analysis of RHDV revealed the presence of five genogroups (G1-G5) with similar time of isolation, regardless of the place of occurrence. RHDVa strains are genetically more variable than RHDV, and all RHDVa strains belong to genogroup G6. RHDV2 was diagnosed for the first time in 2010 in domestic and wild rabbits in France, and later in the Iberian Peninsula, and it was called RHDVb. Like the previously identified variants of the RHD virus, RHDV2 spreads to other regions of the world, and in 2011-2016 it was diagnosed in many European countries, North America, Africa and Australia. Strains of RHD2 form a separate, uniform phylogenetic group and are more similar to the non-pathogenic rabbit calicivirus than to pathogenic RHDV and RHDVa. Infections with different variants of RHD viruses are a serious epidemiological, diagnostic and immunological problem. Advanced antigenic changes in RHD viruses limit the usefulness of standard RHD vaccines in controlling the disease....


2016 ◽  
Vol 62 (6) ◽  
pp. 761-765 ◽  
Author(s):  
Mario Chiari ◽  
Stefano Molinari ◽  
Patrizia Cavadini ◽  
Barbara Bertasi ◽  
Mariagrazia Zanoni ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document