scholarly journals CYP1B1 converts procarcinogens into genotoxins in Saccharomyces cerevisiae

2021 ◽  
Author(s):  
Michael Fasullo ◽  
Nicholas Perpetua ◽  
Akaash Kannan ◽  
MIchael Dolan

CYP1B1 activates many chemical carcinogens into potent genotoxins, and allelic variants are risk factors in lung, breast, and prostate cancer. However, genetic instability phenotypes incurred by CYP1B1-activated metabolites have been investigated for only few compounds. In this study, we expressed human CYP1B1 in yeast strains that measure DNA damage-associated toxicity and frequencies of chromosomal translocations and mutations. DNA damage-associated toxicity was measured in a rad4 rad51 strain, defective in both DNA excision and recombinational repair. Frequencies of chromosomal translocations were measured in diploid yeast strains containing two his3 fragments, and mutation frequencies were measured by selecting for canavanine resistance (CanR) in haploid strains. These strains were exposed to benzo[a]pyrene dihydrodiol (BaP-DHD), aflatoxin B1 (AFB1), and the heterocyclic aromatic amines, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) and 2-amino-3-methylimidazo(4,5-f)quinoline (IQ). We observed that AFB1, BaP-DHD, IQ, and MeIQx conferred toxicity in the DNA repair mutant expressing CYP1B1. Translocation frequencies increased eight-fold and three-fold after exposure to 50 μM AFB1 and 33 μM BaP-DHD respectively. Only a two-fold increase in mutation frequency was observed after exposure to 50 μM AFB1. However, a robust DNA damage response was observed after AFB1 exposure, as measured by the induction of the small subunit of ribonucleotide reductase, Rnr3. While CYP1B1-mediated activation of BaP-DHD and heterocyclic aromatic amines was expected, strong activation of AFB1 was not. These studies demonstrate that CYP1B1-mediated activation of carcinogens does not only activate compounds to become mutagens but also can convert compounds to become potent recombinagens.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2415-2415
Author(s):  
Meagan A Jacoby ◽  
Rigoberto de Jesus ◽  
Jin Shao ◽  
Daniel Koboldt ◽  
Matthew J. Walter

Abstract Abstract 2415 The chromosomal aberrations found in treatment-related acute myeloid leukemia/myelodysplastic syndrome (t-AML/t-MDS) cells suggest that disease initiation and progression may result from the inappropriate response to double-strand DNA breaks (DSBs) induced by prior exposure to radiation or chemotherapy. We hypothesized that dysregulation of DSB repair by homology-directed repair (HDR) or nonhomologous end joining (NHEJ) in t-AML/t-MDS may result from acquired mutations in HDR/NHEJ pathway genes. To test this possibility, we used next-generation sequencing technology to identify somatic genetic variants in 21 canonical HDR and 9 NHEJ DNA repair genes, as well as a subset of 7 DNA damage response genes using tumor DNA and paired normal DNA obtained from 25 t-AML/t-MDS patients. We identified 6 patients with somatic changes in 3 of these genes (RAD51L3, EME1, TP53). As dysfunctional DSB repair from epigenetic or post-translational modifications in DSB repair pathway genes or abnormalities in other DNA repair pathway genes would be missed using this approach, in parallel we performed functional studies of DSB repair using primary bone marrow cells from 16 of these t-AML/t-MDS patients and CD34+ cells from 5 normal donors. We evaluated DSB by measuring phosphorylated histone H2AX (pH2AX), a well established marker for DSB, in myeloblasts (CD45 dim, low side scatter) and lymphocytes (a surrogate for normal cells) in these samples. Baseline measurements of primary cells, coupled with a time course to measure pH2AX induction and decay after 2 Gy of irradiation (IR) were used to assess the basal DSB burden and response to acute damage, respectively. pH2AX levels were measured by flow cytometry and the geometric mean of the fluorescence intensity was converted to mean equivalent soluble fluorophore (MESF) through the use of standard beads included in each experiment. We found that 4 of 16 t-AML/t-MDS patients had myeloblasts that displayed baseline and post-damage pH2AX levels similar to normal CD34+ controls, while 12/16 patients had abnormal pH2AX levels which fell into one of three major patterns. 1) The first subset had myeloblasts in which baseline pH2AX levels were elevated compared to normal donor CD34+ (average MESF 23,107 vs 11,490, respectively; p<=0.002) suggesting an increased basal DSB burden in these cells. Furthermore, the myeloblasts showed impaired pH2AX induction (measured at 30 min. post IR) compared to CD34+ controls (1.53 vs 2.97 fold increase in pH2AX over baseline, p<=0.002), suggesting a defect in detecting DSB. This phenotype was unique to patients harboring trisomy 8 and was tumor specific, as their lymphocytes displayed baseline and post-induction pH2AX levels similar to lymphocytes from normal controls. No somatic (tumor) sequencing variants were present in the interrogated genes, raising the possibility that trisomy 8 could be driving an abnormal DNA damage response. 2) A second subset of patients had impaired pH2AX induction compared to normal donor CD34+ cells (1.44 vs 2.97 fold increase in pH2AX over baseline, p<=0.01), again suggesting a defect in detecting DSBs. These patients also lacked somatic changes in HDR/NHEJ pathway genes. 3) The final subset of patients had delayed resolution of pH2AX levels compared to CD34+ controls post IR either at 4 hours (average MESF 39,260 vs 25,480, p<0.05) or delayed resolution over the entire 24 hour period compared to controls (p<0.001). These data are consistent with a DSB repair defect and similar to our data showing cells lacking BRCA2, a gene central to the HDR pathway, have elevated pH2AX levels at 4–24 hours post DSB induction compared to BRCA2 sufficient cells (p=0.01). One of these patients had an acquired mutation in the HDR gene RAD51L3. We are currently determining the sensitivity of primary t-AML/t-MDS cells with abnormalities in pH2AX levels to a combination of DSB inducing chemotherapy and PARP inhibition, which is synthetically lethal in the setting of HDR defects. We show cell lines lacking RAD51L3 are more sensitive to PARP inhibition compared to isogenic controls (surviving fraction (SF)50 5 nM vs 20,000 nM). In total, this study confirms that DNA repair genes are mutated in t-AML/t-MDS, suggests that dysfunctional DSB repair is present in t-AML/t-MDS myeloblasts, and provides a rationale to test whether the abnormal DNA damage response can be exploited therapeutically using a synthetic lethal approach in this disease. Disclosures: No relevant conflicts of interest to declare.


Oncotarget ◽  
2017 ◽  
Vol 8 (47) ◽  
pp. 81803-81812 ◽  
Author(s):  
Gabriele Di Sante ◽  
Agnese Di Rocco ◽  
Claudia Pupo ◽  
Mathew C. Casimiro ◽  
Richard G. Pestell

1989 ◽  
Vol 9 (11) ◽  
pp. 4932-4940
Author(s):  
S J Elledge ◽  
R W Davis

RNR2 encodes the small subunit of ribonucleotide reductase, the enzyme that catalyzes the first step in the pathway for the production of deoxyribonucleotides needed for DNA synthesis. RNR2 is a member of a group of genes whose activities are cell cycle regulated and that are transcriptionally induced in response to the stress of DNA damage. An RNR2-lacZ fusion was used to further characterize the regulation of RNR2 and the pathway responsible for its response to DNA damage. beta-Galactosidase activity in yeast strains containing the RNR2-lacZ fusion was inducible in response to DNA-damaging agents (UV light, 4-nitroquinoline-1-oxide [4-NQO], and methyl methanesulfonate [MMS]) and agents that block DNA replication (hydroxyurea [HU] and methotrexate) but not heat shock. When MATa cells were arrested in G1 by alpha-factor, RNR2 mRNA was still inducible by DNA damage, indicating that the observed induction can occur outside of S phase. In addition, RNR2 induction was not blocked by the presence of cycloheximide and is therefore likely to be independent of protein synthesis. A mutation, rnr2-314, was found to confer hypersensitivity to HU and increased sensitivity to MMS. In rnr2-314 mutant strains, the DNA damage stress response was found to be partially constitutive as well as hypersensitive to induction by HU but not MMS. The induction properties of RNR2 were examined in a rad4-2 mutant background; in this genetic background, RNR2 was hypersensitive to induction by 4-NQO but not MMS. Induction of the RNR2-lacZ fusion in a RAD(+) strain in response to 4-NQO was not enhanced by the presence of an equal number of rad4-2 cells that lacked the fusion, implying that the DNA damage stress response in cell autonomous.


1989 ◽  
Vol 9 (11) ◽  
pp. 4932-4940 ◽  
Author(s):  
S J Elledge ◽  
R W Davis

RNR2 encodes the small subunit of ribonucleotide reductase, the enzyme that catalyzes the first step in the pathway for the production of deoxyribonucleotides needed for DNA synthesis. RNR2 is a member of a group of genes whose activities are cell cycle regulated and that are transcriptionally induced in response to the stress of DNA damage. An RNR2-lacZ fusion was used to further characterize the regulation of RNR2 and the pathway responsible for its response to DNA damage. beta-Galactosidase activity in yeast strains containing the RNR2-lacZ fusion was inducible in response to DNA-damaging agents (UV light, 4-nitroquinoline-1-oxide [4-NQO], and methyl methanesulfonate [MMS]) and agents that block DNA replication (hydroxyurea [HU] and methotrexate) but not heat shock. When MATa cells were arrested in G1 by alpha-factor, RNR2 mRNA was still inducible by DNA damage, indicating that the observed induction can occur outside of S phase. In addition, RNR2 induction was not blocked by the presence of cycloheximide and is therefore likely to be independent of protein synthesis. A mutation, rnr2-314, was found to confer hypersensitivity to HU and increased sensitivity to MMS. In rnr2-314 mutant strains, the DNA damage stress response was found to be partially constitutive as well as hypersensitive to induction by HU but not MMS. The induction properties of RNR2 were examined in a rad4-2 mutant background; in this genetic background, RNR2 was hypersensitive to induction by 4-NQO but not MMS. Induction of the RNR2-lacZ fusion in a RAD(+) strain in response to 4-NQO was not enhanced by the presence of an equal number of rad4-2 cells that lacked the fusion, implying that the DNA damage stress response in cell autonomous.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 2118-P
Author(s):  
CHAY TENG YEO ◽  
BRYNDON OLESON ◽  
JOHN A. CORBETT ◽  
JAMIE K. SCHNUCK

Sign in / Sign up

Export Citation Format

Share Document