strong anchoring
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 13)

H-INDEX

9
(FIVE YEARS 1)

Author(s):  
Masahiro Ito ◽  
Kazuma Kajiwara ◽  
Kohki Takatoh

Abstract Display characteristics have a fairly strong dependence on the configuration of the liquid crystal (LC) molecules and interactions between the LC molecules and the alignment layer surface. To obtain LC devices with a fast response, the usage of reactive mesogens (RMs) have been studied. RMs polymerize in the vicinity of the alignment layer. We assessed the effectiveness of linearly polarized UV light for polymer formation. Three kinds of UV light, namely (i)non-polarized (ii)parallel to, and (iii)perpendicular to the rubbing direction, were used to irradiate LC cells with RM concentrations of 5wt% and 10wt%. For both RM concentrations, LC devices using LPUV parallel to the rubbing direction yielded the shortest decay times. SEM observation revealed that the fibrils polymerized linearly in the same direction on using LPUV parallel to the rubbing direction. The decay time was presumably shortened by the strong anchoring force and high alignment ability of the linear fibrils.


2021 ◽  
Author(s):  
T. Lahiri ◽  
S. K. Pushkar ◽  
P. Poddar

Abstract Freedericksz effect is investigated theoretically for a ferronematic liquid crystal, which is a colloidal suspension of ferromagnetic nanoparticles in a nematic fluid. Considering a splay type Freedericksz geometry, weak anchoring conditions are assumed at the cell boundaries. The specific nature of this anchoring reveals a rich variety of stable ferronematic phases, which include uniform, distorted and saturated states. Apart from weak anchoring conditions at the cell boundaries, soft planar anchoring is assumed for the mesogenic molecules at the surface of a nanoparticle. The interplay between these two anchoring phenomena along with Frank type elastic theory determine the values of Freedericksz threshold between various ferronematic states. It is found that compared to relatively strong anchoring for the mesogens both at the cell boundaries and at the surface of the nanoparticles, weak anchoring significantly reduces the Freedericksz threshold field. Landau theory is then utilized to understand the nature of transition between different ferronematic states. Based on the phenomenon of segregation effect, these transitions are found to be either first order or second order in nature. The present theory is also extended to non-ferromagnetic nanoparticles and significant reduction in Freedericksz threshold is obtained. Finally, these results are corroborated with experimental findings.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1166
Author(s):  
Cristina Cirtoaje

A theoretical evaluation of the electric Freedericksz transition threshold and saturation field is proposed for a liquid crystals composite with ferroelectric particles. Existing models consider a strong anchoring of nematic molecules on the glass support of the cell, but in this paper a soft molecular anchoring of molecules on the glass support and also on the ferroelectric nanoparticle’s surface is assumed. Thus, a finite saturation field was obtained in agreement with real systems. Calculations are made for planar configuration of positive dielectric anisotropy liquid crystals. The results are compared with data obtained on similar systems from different publications and the differences are discussed.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 263
Author(s):  
Fabian Schröer ◽  
Tanja J. Paul ◽  
Dimitri Wilms ◽  
Torben H. Saatkamp ◽  
Nicholas Jäck ◽  
...  

The synthesis of carbohydrate-functionalized biocompatible poly(oligo(ethylene glycol) methacrylate microgels and the analysis of the specific binding to concanavalin A (ConA) and Escherichia coli (E. coli) is shown. By using different crosslinkers, the microgels’ size, density and elastic modulus were varied. Given similar mannose (Man) functionalization degrees, the softer microgels show increased ConA uptake, possibly due to increased ConA diffusion in the less dense microgel network. Furthermore, although the microgels did not form clusters with E. coli in solution, surfaces coated with mannose-functionalized microgels are shown to bind the bacteria whereas galactose (Gal) and unfunctionalized microgels show no binding. While ConA binding depends on the overall microgels’ density and Man functionalization degree, E. coli binding to microgels’ surfaces appears to be largely unresponsive to changes of these parameters, indicating a rather promiscuous surface recognition and sufficiently strong anchoring to few surface-exposed Man units. Overall, these results indicate that carbohydrate-functionalized biocompatible oligo(ethylene glycol)-based microgels are able to immobilize carbohydrate binding pathogens specifically and that the binding of free lectins can be controlled by the network density.


Author(s):  
Eunji Choi ◽  
Sung Jun Hong ◽  
Junhe Chen ◽  
Yeong Jae Kim ◽  
Yunkyu Choi ◽  
...  

A CO2-selective ZIF-type membrane was fabricated by growing a ZIF-8 layer on a graphene oxide nanoribbon (GONR)-coated polymeric substrate. Owing to the strong anchoring effect of GONR to the ZIF-8...


2021 ◽  
Author(s):  
Darpan V. Bhuse ◽  
Pundlik R. Bhagat

Synthesis of a novel metal free porphyrin dyad with excellent electronic coupling and anti-aggregating stability via strong anchoring to semiconductor through six carboxyl groups exhibiting 6.9% PCE in a truly energy generating DSSC.


2020 ◽  
Vol 80 (5) ◽  
pp. 2299-2317
Author(s):  
Shibin Dai ◽  
Bo Li ◽  
Toai Luong

Sign in / Sign up

Export Citation Format

Share Document