light response curve
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 6)

H-INDEX

15
(FIVE YEARS 1)

Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 174
Author(s):  
Azumi Okamoto ◽  
Kohei Koyama ◽  
Narayan Bhusal

Understanding plant physiological responses to high temperature is an important concern pertaining to climate change. However, compared with terrestrial plants, information about aquatic plants remains limited. Since the degree of midday depression of photosynthesis under high temperature depends on soil water conditions, it is expected that emergent aquatic plants, for which soil water conditions are always saturated, will show different patterns compared with terrestrial plants. We investigated the diurnal course of the photosynthetic light-response curve and incident light intensity for a freshwater emergent plant, buckbean (Menyanthes trifoliata L.; Menyanthaceae) in a cool temperate region. The effect of midday depression was observed only on a very hot day, but not on a moderately hot day, in summer. The diurnal course of photosynthetic light-response curves on this hot day showed that latent morning reduction of photosynthetic capacity started at dawn, preceding the apparent depression around the midday, in agreement with results reported in terrestrial plants. We concluded that (1) midday depression of emergent plants occurs when the stress intensity exceeds the species’ tolerance, and (2) measurements of not only photosynthetic rate under field conditions but also diurnal course of photosynthetic light-response curve are necessary to quantify the effect of midday depression.


2020 ◽  
Vol 21 (21) ◽  
pp. 8022
Author(s):  
Swee-Suak Ko ◽  
Chung-Min Jhong ◽  
Yi-Jyun Lin ◽  
Ching-Yu Wei ◽  
Ju-Yin Lee ◽  
...  

Vanilla orchid, which is well-known for its flavor and fragrance, is cultivated in tropical and subtropical regions. This shade-loving plant is very sensitive to high irradiance. In this study, we show that vanilla chloroplasts started to have avoidance movement when blue light (BL) was higher than 20 μmol m−2s−1 and significant avoidance movement was observed under BL irradiation at 100 μmol m−2s−1 (BL100). The light response curve indicated that when vanilla was exposed to 1000 μmol m−2s−1, the electron transport rate (ETR) and photochemical quenching of fluorescence (qP) were significantly reduced to a negligible amount. We found that if a vanilla orchid was irradiated with BL100 for 12 days, it acquired BL-acclimation. Chloroplasts moved to the side of cells in order to reduce light-harvesting antenna size, and chloroplast photodamage was eliminated. Therefore, BL-acclimation enhanced vanilla orchid growth and tolerance to moderate (500 μmol m−2s−1) and high light (1000 μmol m−2s−1) stress conditions. It was found that under high irradiation, BL-acclimatized vanilla maintained higher ETR and qP capacity than the control without BL-acclimation. BL-acclimation induced antioxidant enzyme activities, reduced ROS accumulation, and accumulated more carbohydrates. Moreover, BL-acclimatized orchids upregulated photosystem-II-associated marker genes (D1 and PetC), Rubisco and PEPC transcripts and sustained expression levels thereof, and also maximized the photosynthesis rate. Consequently, BL-acclimatized orchids had higher biomass. In short, this study found that acclimating vanilla orchid with BL before transplantation to the field might eliminate photoinhibition and enhance vanilla growth and production.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Junzeng Xu ◽  
Yuping Lv ◽  
Xiaoyin Liu ◽  
Qi Wei ◽  
Zhiming Qi ◽  
...  

2018 ◽  
Vol 143 (2) ◽  
pp. 144-153 ◽  
Author(s):  
Lingyan Chen ◽  
Jinli Lai ◽  
Tianyou He ◽  
Jundong Rong ◽  
Muhammad Waqqas Khan Tarin ◽  
...  

Variegated temple bamboo (Sinobambusa tootsik f. luteoloalbostriata) is a species of ornamental bamboo (Bambusoideae) that has gained popularity because of its striped or variegated leaves. In this study, a series of experiments was conducted to determine the factors contributing to the leaf color of this species, which included the content of the photosynthetic pigments and the chlorophyll biosynthetic precursors, the photosynthetic parameters, and the microstructure and ultrastructure of the different phenotypes. Discoloration in the leaves of variegated temple bamboo plants is attributed to two possible pathways. One was a block in chlorophyll biosynthesis, which led to the failure in biosynthesis of the thylakoid membrane. The other one was a disruption in chloroplast development. The lack of thylakoid membrane may have inhibited the conversion of coproporphyrinogen III (Coprogen III) to protoporphyrin IX (Proto IX) during the chlorophyll biosynthesis because the enzyme responsible for this conversion, protogen oxidase, is bound to the thylakoid membrane. The abnormalities in chloroplasts and a low concentration of chlorophyll in the variegated leaves led to a significantly lower photosynthetic rate than in the entirely green leaves, as demonstrated in the light-response curve.


2018 ◽  
Vol 09 (08) ◽  
pp. 1630-1645 ◽  
Author(s):  
Lusheng Wan ◽  
Zhen Xing ◽  
Xinyue Chang ◽  
Jiang Liu ◽  
Guorong Zhang

Sign in / Sign up

Export Citation Format

Share Document