microwave diagnostics
Recently Published Documents


TOTAL DOCUMENTS

117
(FIVE YEARS 17)

H-INDEX

13
(FIVE YEARS 0)

2022 ◽  
Vol 17 (01) ◽  
pp. C01050
Author(s):  
G. Torrisi ◽  
E. Naselli ◽  
L. Di Donato ◽  
G.S. Mauro ◽  
M. Mazzaglia ◽  
...  

Abstract Plasma diagnostics is a topic having a great impact on R&D in compact ion sources as well as in large fusion reactors. Towards this aim, non-invasive microwave diagnostics approaches, such as interferometric, polarimetric and microwave imaging profilometric techniques can allow obtaining volumetric, line-integrated or even space-resolved information about plasma electron density. Special probes can be also designed and implemented in order to characterize external and/or self-generated radio-waves in the plasmas. In particular, the design, construction and operation of a K-band microwave interferometry/polarimetry setup based on the Frequency-Modulated Continuous-Wave (FMCW) method at INFN-LNS will be described: this tool provides reliable measurements of the plasma density even in the extreme unfavorable wavelength-to-plasma scale ratio in plasma-based ion sources. A “frequency sweep” and a post-processing filtering method (for interferometry and polarimetry, respectively) were used to filter out the multipath contributions or cavity induced depolarizations in the detected signals. Besides this, the use of the aforementioned RF plasma-immersed probes will also be discussed, which allow measuring local E-fields and fast temporal response in order to characterize turbulent (through kinetic instabilities, cyclotron maser emission, etc.) vs. stable plasma regimes. An analysis based on wavelet transform applied to measurements of plasma radio self-emission in B-minimum and simple mirror traps will be presented. These tools and methods have the potential to be applied to plasma machines both in compact traps and large-size reactors with a proper scaling.


2022 ◽  
Vol 92 (3) ◽  
pp. 386
Author(s):  
Н.А. Богатов ◽  
В.С. Сысоев ◽  
Д.И. Сухаревский ◽  
М.Ю. Наумова

The microwave diagnostics of discharges occurring in an artificial cloud of charged water droplets created in an open air simulating the environment of thunderclouds is implemented. An artificial cloud with a droplet size of about 1 microns is opaque in the visible range, so intra-cloud discharges are not available for investigation by traditional methods in the spark discharge physics based on the registration of visible discharge radiation. Microwaves pass through such a cloud without noticeable attenuation, they interact only with the plasma of discharges occurring in the cloud. The probing microwave radiation had a wavelength of 8 mm. The attenuation of microwaves passed through the cloud was measured with temporary resolution of about 10 ns. The temporal characteristics of intra-cloud discharges were investigated.


2021 ◽  
Vol 11 (19) ◽  
pp. 8975
Author(s):  
Alexander Yashin ◽  
Victor Bulanin ◽  
Alexander Petrov ◽  
Anna Ponomarenko

Doppler backscattering (DBS) is a microwave diagnostics method typically used to study the plasma rotation velocity. Apart from conventional techniques, more advanced forms of DBS implementation were suggested on Globus-M. More specifically the study of a variety of oscillating processes was performed using DBS. In this review we present a detailed description of all of the methods and techniques employed in Globus-M alongside results obtained using DBS in all the years up until the shutdown of the tokamak. These include research similar to that done on other devices into the properties of such phenomena like geodesic acoustic modes or limit cycle oscillations, along with innovative works regarding the detection and investigation of Alfven eigenmodes and filaments that were the first of their kind and that provided important and novel results. Apart from that, the specific aspects of DBS application on a spherical tokamak are discussed. An in-depth look into the gradual change and improvement of the DBS diagnostics on Globus-M is also presented in this paper.


2021 ◽  
Author(s):  
Yilun Zhu ◽  
Guanying Yu ◽  
Ying Chen ◽  
Calvin Domier ◽  
Jon Dannenberg ◽  
...  

2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
L.A. Bokeria ◽  
◽  
T.T. Kakuchaya ◽  
A.M. Kuular ◽  
Ye.S. Maksimovitch ◽  
...  

Results of theoretical and experimental studies of the method of the near-field microwave tomography of the thorax are presented. Integral equations of inverse tomography problem of 3D blood- and air content inhomogeneities by data of multisensory measurements are obtained. Methods of air and blood content profiling in processes of breathing and heart activity by data of bistatic measurements of the scattered signal are proposed and solving algorithms of inverse problems are studied in the numerical simulation. Multifrequency and pulse measurements of scattered signals are carried out in processes of cardiorespiratory activity. By data of bistatic measurements of scattered signals parameters from the thorax, profiling relative air- and blood content profiles has been realized. Application possibilities of the method in the biomedical diagnostics are considered.


2021 ◽  
pp. 163-170
Author(s):  
Y.V. Siusko ◽  
Yu.V. Kovtun

A brief review of the main microwave diagnostics methods of inhomogeneous plasma based on the refraction of microwaves is given. These methods make it possible to determine the plasma density distribution, the magnetic field distribution, the electron collision frequency, and the electron temperature profile. In addition, the determination of the average density of the peripheral plasma layers and the local inhomogeneities of the rotating plasma are also possible. The effect of refraction on the accuracy of determining the plasma parameters by using microwave methods for plasma diagnostics is considered.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
V.M. Gavrilov ◽  
◽  
L.T. Sushkova ◽  

This article discusses three current medical and environmental problems that use microwave technologies to solve. The first task was related to the influence of the magnetic field on the human body. At the same time, special attention was paid to its deficiency, which leads to undesirable consequences and the need for correction. The second task was related to the diagnosis and therapy of brain tumors. The results of studies of the possibility of virtual microwave diagnostics of cerebral edema using the CST MS 2013 software component on a computer phantom of the human head with physically accurate electrodynamic parameters of biological tissues are presented and its effectiveness is shown, including in the early stages of the disease. In addition, the possibility of local hyperthermia of neoplasms in the brain using a focused electromagnetic field is considered. The third task was related with assessment of the electromagnetic situation in the urban area in order to identify areas with field levels exceeding sanitary norms. Electrodynamic calculation of the field distribution in the urban development zone, represented by a three-dimensional computer model, was carried out on the base of the FEKO program.


Author(s):  
Alexandr Galka ◽  
Andrew Martusevich ◽  
Dmitry Yanin ◽  
Alexandr Kostrov ◽  
Anna Epishkina

Author(s):  
O. Besova ◽  
V. Karlov ◽  
O. Lukashuk ◽  
I. Petryshenko

Methods of microwave diagnostics of a phased array allow reconstructing the amplitude-phase distribution in the antenna and implement on this basis methods for adapting the lattice control to those found in the amplitude-phase distribution to defects. The methods of microwave diagnostics from the near zone described in the well-known literature are realizable only in anechoic chambers or on specially equipped training grounds. To solve the problems of adapting a phased antenna array to a technical state and increasing its operating time under extreme conditions, it is necessary to have methods of integrated microwave diagnostics of a phased antenna array at its location. The aim of the article is to develop a method for microwave diagnostics of a phased array antenna, implemented from the near zone of the antenna at its location, and eliminating the influence of echo signals (ES) on the diagnostic results. The article proposes a method for microwave diagnostics of a phased array antenna from the near field, which allows to exclude the influence on the accuracy of diagnostics of the echo signal present at the measuring site and errors in the positioning of the measuring probe. The proposed method will make it possible to implement microwave diagnostics of the antenna from the near field at its location. The results of microwave diagnostics are supposed to be used to implement various methods of adapting a phased array to a technical condition, significantly increasing its life


Sign in / Sign up

Export Citation Format

Share Document