Anthropogenic Aerosols Dominate Forced Multidecadal Sahel Precipitation Change through Distinct Atmospheric and Oceanic Drivers

2020 ◽  
Vol 33 (23) ◽  
pp. 10187-10204
Author(s):  
Haruki Hirasawa ◽  
Paul J. Kushner ◽  
Michael Sigmond ◽  
John Fyfe ◽  
Clara Deser

AbstractSahel precipitation has undergone substantial multidecadal time scale changes during the twentieth century that have had severe impacts on the region’s population. Using initial-condition large ensembles (LE) of coupled general circulation model (GCM) simulations from two institutions, forced multidecadal variability is found in which Sahel precipitation declines from the 1950s to 1970s and then recovers from the 1970s to 2000s. This forced variability has similar timing to, but considerably smaller magnitude than, observed Sahel precipitation variability. Isolating the response using single forcing simulations within the LEs reveals that anthropogenic aerosols (AA) are the primary driver of this forced variability. The roles of the direct-atmospheric and the ocean-mediated atmospheric responses to AA forcing are determined with the atmosphere–land GCM (AGCM) components of the LE coupled GCMs. The direct-atmospheric response arises from changes to aerosol and precursor emissions with unchanged oceanic boundary conditions while the ocean-mediated response arises from changes to AA-forced sea surface temperatures and sea ice concentrations diagnosed from the AA-forced LE. In the AGCMs studied here, the direct-atmospheric response dominates the AA-forced 1970s − 1950s Sahel drying. On the other hand, the 2000s − 1970s wetting is mainly driven by the ocean-mediated effect, with some direct atmospheric contribution. Although the responses show differences, there is qualitative agreement between the AGCMs regarding the roles of the direct-atmospheric and ocean-mediated responses. Since these effects often compete and show nonlinearity, the model dependence of these effects and their role in the net aerosol-forced response of Sahel precipitation need to be carefully accounted for in future model analysis.

2020 ◽  
Vol 33 (18) ◽  
pp. 7835-7858 ◽  
Author(s):  
Clara Deser ◽  
Adam S. Phillips ◽  
Isla R. Simpson ◽  
Nan Rosenbloom ◽  
Dani Coleman ◽  
...  

AbstractThe evolving roles of anthropogenic aerosols (AER) and greenhouse gases (GHG) in driving large-scale patterns of precipitation and SST trends during 1920–2080 are studied using a new set of “all-but-one-forcing” initial-condition large ensembles (LEs) with the Community Earth System Model version 1 (CESM1), which complement the original “all-forcing” CESM1 LE (ALL). The large number of ensemble members (15–20) in each of the new LEs enables regional impacts of AER and GHG to be isolated from the noise of the model’s internal variability. Our analysis approach, based on running 50-yr trends, accommodates geographical and temporal changes in patterns of forcing and response. AER are shown to be the primary driver of large-scale patterns of externally forced trends in ALL before the late 1970s, and GHG to dominate thereafter. The AER and GHG forced trends are spatially distinct except during the 1970s transition phase when aerosol changes are mainly confined to lower latitudes. The transition phase is also characterized by a relative minimum in the amplitude of forced trend patterns in ALL, due to a combination of reduced AER and partially offsetting effects of AER and GHG. Internal variability greatly limits the detectability of AER- and GHG-forced trend patterns in individual realizations based on pattern correlation metrics, especially during the historical period, highlighting the need for LEs. We estimate that <20% of the spatial variances of observed precipitation and SST trends are attributable to AER and GHG forcing, although model biases in patterns of forced response and signal-to-noise may affect this estimate.


2016 ◽  
Vol 29 (24) ◽  
pp. 9125-9139 ◽  
Author(s):  
Adeline Bichet ◽  
Paul J. Kushner ◽  
Lawrence Mudryk

Abstract Better constraining the continental climate response to anthropogenic forcing is essential to improve climate projections. In this study, pattern scaling is used to extract, from observations, the patterned response of sea surface temperature (SST) and sea ice concentration (SICE) to anthropogenically dominated long-term global warming. The SST response pattern includes a warming of the tropical Indian Ocean, the high northern latitudes, and the western boundary currents. The SICE pattern shows seasonal variations of the main locations of sea ice loss. These SST–SICE response patterns are used to drive an ensemble of an atmospheric general circulation model, the National Center for Atmospheric Research (NCAR) Community Atmosphere Model, version 5 (CAM5), over the period 1980–2010 along with a standard AMIP ensemble using observed SST—SICE. The simulations enable attribution of a variety of observed trends of continental climate to global warming. On the one hand, the warming trends observed in all seasons across the entire Northern Hemisphere extratropics result from global warming, as does the snow loss observed over the northern midlatitudes and northwestern Eurasia. On the other hand, 1980–2010 precipitation trends observed in winter over North America and in summer over Africa result from the recent decreasing phase of the Pacific decadal oscillation and the recent increasing phase of the Atlantic multidecadal oscillation, respectively, which are not part of the global warming signal. The method holds promise for near-term decadal climate prediction but as currently framed cannot distinguish regional signals associated with oceanic internal variability from aerosol forcing and other sources of short-term forcing.


Sign in / Sign up

Export Citation Format

Share Document