scholarly journals First law of black hole in the gravitational electromagnetic system

2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Jie Jiang ◽  
Aofei Sang ◽  
Ming Zhang

Abstract After considering the quantum corrections of Einstein-Maxwell theory, the effective theory will contain some higher-curvature terms and nonminimally coupled electromagnetic fields. In this paper, we study the first law of black holes in the gravitational electromagnetic system with the Lagrangian ℒ(gab, Rabcd, Fab). Firstly, we calculate the Noether charge and the variational identity in this theory, and then generically derive the first law of thermodynamics for an asymptotically flat stationary-axisymmetric symmetric black hole without the requirement that the electromagnetic field is smooth on the bifurcation surface. Our results indicate that the first law of black hole thermodynamics might be valid for the Einstein-Maxwell theory with some quantum corrections in the effective region.

2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Alexander Y. Yosifov ◽  
Lachezar G. Filipov

We argue that certain nonviolent local quantum field theory (LQFT) modification considered at the global horizon (r=2M) of a static spherically symmetric black hole can lead to adiabatic leakage of quantum information in the form of Hawking particles. The source of the modification is (i) smooth at r=2M and (ii) rapidly vanishing at r≫2M. Furthermore, we restore the unitary evolution by introducing extra quanta which departs slightly from the generic Hawking emission without changing the experience of an infalling observer (no drama). Also, we suggest that a possible interpretation of the Bekenstein-Hawking bound as entanglement entropy may yield a nonsingular dynamical horizon behavior described by black hole thermodynamics. Hence, by treating gravity as a field theory and considering its coupling to the matter fields in the Minkowski vacuum, we derive the conjectured fluctuations of the background geometry of a black hole.


Universe ◽  
2020 ◽  
Vol 6 (9) ◽  
pp. 148
Author(s):  
Jianhui Qiu ◽  
Changjun Gao

We construct higher-dimensional and exact black holes in Einstein-Maxwell-scalar theory. The strategy we adopted is to extend the known, static and spherically symmetric black holes in the Einstein-Maxwell dilaton gravity and Einstein-Maxwell-scalar theory. Then we investigate the black hole thermodynamics. Concretely, the generalized Smarr formula and the first law of thermodynamics are derived.


2017 ◽  
Vol 26 (13) ◽  
pp. 1750151 ◽  
Author(s):  
Hao Xu ◽  
Yuan Sun ◽  
Liu Zhao

The extended phase-space thermodynamics and heat engines for static spherically symmetric black hole solutions of four-dimensional conformal gravity are studied in detail. It is argued that the equation of states (EOS) for such black holes is always branched, any continuous thermodynamical process cannot drive the system from one branch of the EOS into another branch. Meanwhile, the thermodynamical volume is bounded from above, making the black holes always super-entropic in one branch and may also be super-entropic in another branch in certain range of the temperature. The Carnot and Stirling heat engines associated to such black holes are shown to be distinct from each other. For rectangular heat engines, the efficiency always approaches zero when the rectangle becomes extremely narrow, and given the highest and lowest working temperatures fixed, there is always a maximum for the efficiency of such engines.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Mario Herrero-Valea ◽  
Stefano Liberati ◽  
Raquel Santos-Garcia

Abstract The persistence of a suitable notion of black hole thermodynamics in Lorentz breaking theories of gravity is not only a non-trivial consistency test for such theories, it is also an interesting investigation per se, as it might help us identifying the crucial features at the root of these surprising laws governing such purely gravitational objects. In past investigations, controversial findings were presented in this sense. With the aim of settling this issue, we present here two complementary derivations of Hawking radiation in geometries endowed with universal horizons: a novel feature of back holes in Lorentz breaking theories of gravity which reproduces several properties normally characterizing Killing horizons. We find that both the derivations agree on the fact that the Hawking temperature associated to these geometries is set by the generalized universal horizon peeling surface gravity, as required for consistency with extant derivations of the first law of thermodynamics for these black holes. We shall also comment on the compatibility of our results with previous alternative derivations and on their significance for the survival of the generalized second law of black hole thermodynamics in Lorentz breaking theories of gravity.


2009 ◽  
Vol 18 (11) ◽  
pp. 1773-1783 ◽  
Author(s):  
A. SHEYKHI ◽  
H. ALAVIRAD

We derive a new analytic solution of (n + 1)-dimensional (n ≥ 4) Brans–Dicke–Maxwell theory in the presence of a potential for the scalar field, by applying a conformal transformation to the dilaton gravity theory. Such solutions describe topological charged black holes with unusual asymptotics. We obtain the conserved and thermodynamic quantities through the use of the Euclidean action method. We also study the thermodynamics of the solutions and verify that the conserved and thermodynamic quantities of the solutions satisfy the first law of black hole thermodynamics.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Subenoy Chakraborty ◽  
Subhajit Saha

The paper deals with Hawking radiation from both a general static black hole and a nonstatic spherically symmetric black hole. In case of static black hole, tunnelling of nonzero mass particles is considered and due to complicated calculations, quantum corrections are calculated only up to the first order. The results are compared with those for massless particles near the horizon. On the other hand, for dynamical black hole, quantum corrections are incorporated using the Hamilton-Jacobi method beyond semiclassical approximation. It is found that different order correction terms satisfy identical differential equation and are solved by a typical technique. Finally, using the law of black hole mechanics, a general modified form of the black hole entropy is obtained considering modified Hawking temperature.


2020 ◽  
Vol 80 (12) ◽  
Author(s):  
P. Bargueño ◽  
J. A. Miralles ◽  
J. A. Pons

AbstractIn this work we extend the first law of thermodynamics to spherically symmetric black hole solutions in the context of scale-dependent gravity. After deriving generalized expressions for both the entropy and energy due to the spatial variation of the gravitational constant we analize, by pointing out some relations between scale-dependent and f(R) theories, whether or not the former can be described using equilibrium thermodynamics.


2014 ◽  
Vol 23 (11) ◽  
pp. 1450093 ◽  
Author(s):  
Yan-Gang Miao ◽  
Fang-Fang Yuan ◽  
Zheng-Zheng Zhang

The first law of thermodynamics at black hole horizons is known to be obtainable from the gravitational field equations. A recent study claims that the contributions at inner horizons should be considered in order to give the conventional first law of black hole thermodynamics. Following this method, we revisit the thermodynamic aspects of field equations in the Lovelock gravity and f(R) gravity by focusing on two typical classes of charged black holes in the two theories.


2010 ◽  
Vol 19 (03) ◽  
pp. 293-303 ◽  
Author(s):  
M. H. DEHGHANI ◽  
A. BAZRAFSHAN

We present the topological solutions of Einstein dilaton gravity in the presence of a non-Abelian Yang–Mills field. In four dimensions, we consider the So(3) and So(2, 1) semisimple group as the Yang–Mills gauge group, and introduce the black hole solutions with spherical and hyperbolic horizons, respectively. The solution in the absence of dilaton potential is asymptotically flat and exists only with a spherical horizon. Contrary to the nonextreme Reissner–Nordstrom black hole, which has two horizons with a timelike and avoidable singularity, here the solution may present a black hole with a null and unavoidable singularity with only one horizon. In the presence of dilaton potential, the asymptotic behavior of the solutions is neither flat nor anti–de Sitter. These solutions contain a null and avoidable singularity, and may present a black hole with two horizons, an extreme black hole or a naked singularity. We also calculate the mass of the solutions through the use of a modified version of the Brown–York formalism, and consider the first law of thermodynamics.


Sign in / Sign up

Export Citation Format

Share Document