post array
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 4)

H-INDEX

10
(FIVE YEARS 0)

Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1377
Author(s):  
Abba Abdulhamid Abubakar ◽  
Bekir Sami Yilbas ◽  
Mubarak Yakubu ◽  
Hussain Al-Qahtani ◽  
Ghassan Hassan ◽  
...  

In this paper, the impact mechanisms of a water droplet on hydrophobized micro-post array surfaces are examined and the influence of micro-post arrays spacing on the droplet behavior in terms of spreading, retraction, and rebounding is investigated. Impacting droplet behavior was recorded using a high-speed facility and flow generated in the droplet fluid was simulated in 3D geometry accommodating conditions of the experiments. Micro-post arrays were initially formed lithographically on silicon wafer surfaces and, later, replicated by polydimethylsiloxane (PDMS). The replicated micro-post arrays surfaces were hydrophobized through coating by functionalized nano-silica particles. Hydrophobized surfaces result in a contact angle of 153° ± 3° with a hysteresis of 3° ± 1°. The predictions of the temporal behavior of droplet wetting diameter during spreading agree with the experimental data. Increasing micro-post arrays spacing reduces the maximum spreading diameter on the surface; in this case, droplet fluid penetrated micro-posts spacing creates a pinning effect while lowering droplet kinetic energy during the spreading cycle. Flow circulation results inside the droplet fluid in the edge region of the droplet during the spreading period; however, opposing flow occurs from the outer region towards the droplet center during the retraction cycle. This creates a stagnation zone in the central region of the droplet, which extends towards the droplet surface onset of droplet rebounding. Impacting droplet mitigates dust from hydrophobized micro-post array surfaces, and increasing droplet Weber number increases the area of dust mitigated from micro-post arrays surfaces.


2021 ◽  
Author(s):  
Joseph Bentor ◽  
Mahmud Kamal Raihan ◽  
Colin McNeely ◽  
Zhijian Liu ◽  
Song Yongxin ◽  
...  
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abba Abdulhamid Abubakar ◽  
Bekir Sami Yilbas ◽  
Al-Qahtani Hussain ◽  
Ghassan Hassan ◽  
Johnny Ebaika Adukwu

AbstractWater droplet rolling motion over the hydrophobized and optically transparent micro-post array surfaces is examined towards dust removal pertinent to self-cleaning applications. Micro-post arrays are replicated over the optically transparent polydimethylsiloxane (PDMS) surfaces. The influence of micro-post array spacing on droplet rolling dynamics is explored for clean and dusty surfaces. The droplet motions over clean and dusty micro-post array surfaces are monitored and quantified. Flow inside the rolling droplet is simulated adopting the experimental conditions. Findings reveal that micro-post gap spacing significantly influences droplet velocity on clean and dusty hydrophobized surfaces. Air trapped within the micro-post gaps acts like a cushion reducing the three-phase contact line and interfacial contact area of the rolling droplet. This gives rise to increased droplet velocity over the micro-post array surface. Droplet kinetic energy dissipation remains large for plain and micro-post arrays with small gap spacings. A Rolling droplet can pick up dust particles from micro-post array gaps; however, few dust residues are observed for large gap spacings. Nevertheless, dust residues are small in quantity over hydrophobized micro-post array surfaces.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 776
Author(s):  
Chul Min Kim ◽  
Hye Jin Choi ◽  
Gyu Man Kim

We present a 512-channel geometric droplet-splitting microfluidic device that involves the injection of a premixed emulsion for microsphere production. The presented microfluidic device was fabricated using conventional photolithography and polydimethylsiloxane casting. The fabricated microfluidic device consisted of 512 channels with 256 T-junctions in the last branch. Five hundred and twelve microdroplets with a narrow size distribution were produced from a single liquid droplet. The diameter and size distribution of prepared micro water droplets were 35.29 µm and 8.8% at 10 mL/h, respectively. Moreover, we attempted to prepare biocompatible microspheres for demonstrating the presented approach. The diameter and size distribution of the prepared poly (lactic-co-glycolic acid) microspheres were 6.56 µm and 8.66% at 10 mL/h, respectively. To improve the monodispersity of the microspheres, we designed an additional post array part in the 512-channel geometric droplet-splitting microfluidic device. The monodispersity of the microdroplets prepared with the microfluidic device combined with the post array part exhibited a significant improvement.


2017 ◽  
Vol 24 (7) ◽  
Author(s):  
Ji-Xuan Hou ◽  
Xu-Chen Yu ◽  
Zi-Wen Huang

2017 ◽  
Vol 31 (04) ◽  
pp. 1750028 ◽  
Author(s):  
Ji-Xuan Hou ◽  
Ye-Hui Zhang ◽  
Yao Chen ◽  
Xu-Chen Yu

We demonstrate that the arrangement differs of posts have significant effect on the translocation of polymer chains which are embedded in the post arrays by using Monte Carlo algorithm. Due to the equivalent entropic force, polymers have a tendency to translocate to the disordered-arranged post array side other than the ordered-arranged side even though the post densities are equal on both sides. By changing the diameter of the posts, we find that the associated translocation times are strongly affected by the structure of the post array. Since the entropic force is almost identical for each monomer of the polymer chain and the free energy difference between two differently-arranged sides increases linearly with the polymer chain length, the directional preference strongly depends on the polymer chain length, and the ratio between the probabilities for a polymer to move either side obeys the Boltzmann distribution. Hence, a new microfabricated device which is used to separate deoxyribonucleic acid (DNA) by molecular weight can be designed using this idea. Moreover, this study can help us to develop a better understanding on the passages of polymers across membranes in nature.


2016 ◽  
Vol 2016 (1) ◽  
pp. 1-3 ◽  
Author(s):  
Byeong-Yong Park ◽  
Tae-Wan Kim ◽  
Seong-Ook Park

Sign in / Sign up

Export Citation Format

Share Document