periprosthetic fracture
Recently Published Documents


TOTAL DOCUMENTS

239
(FIVE YEARS 80)

H-INDEX

20
(FIVE YEARS 4)

2022 ◽  
Vol 4 (1) ◽  
pp. 01-04
Author(s):  
Jayesh Mhatre

Tubercle bacilli has been known to live in symbiosis with mankind since centuries. Tubercle bacilli mainly causes pulmonary disease but extra pulmonary manifestations are fairly common with spine being the most common site


2021 ◽  
Author(s):  
wen wang ◽  
Yuntao Long ◽  
Yubin Qi ◽  
Guilai Zuo ◽  
Qingjie Zhang ◽  
...  

Abstract Background: We undertook a comparative biomechanical study of type B1 fractures around the femoral prosthesis following cemented hip arthroplasty using the Ortho-Bridge System (OBS) and a locking compression plate/locking attachment plate structure (LCP+LAP), and aimed to determine the effectiveness and advantages of the OBS when treating this fracture type. Methods: An OBS fixation model was designed based on OBS and LCP+LAP fixation characteristics. The LCP+LAP combination (Group A) and three different OBS combinations (Groups B, C, and D) were used to fix a B1 fracture model with a femoral periprosthetic fracture. Axial compression and torsion experiments were then performed using simple and comminuted fracture models. We conducted axial compression failure, model stiffness, and torsion angle tests, and tested the vertical load of final failure. Results: When simulating simple oblique fractures, no significant difference was found in terms of stiffness between the four groups in the axial compression experiment (P = 0.257). The torsion angle of the LCP+LAP system was significantly higher than that of the OBS (P < 0.05); however, there was no significant difference in the torsion angle between the OBS combinations (P > 0.05). Axial compression experimental data showed that stiffness in the three OBS combinations was higher than that in the LCP+LAP system (P = 0.000). Torsion angles of the three OBS combinations were smaller than those of the LCP+LAP system (P < 0.05). In the axial compression failure test, the fixed failure mode in the LCP+LAP system involved destruction of the contact cortex at the fracture site, while the failure modes in the three OBS combinations involved destruction of the contact cortex at the fracture site and the fracture around the screws above the osteotomy. Conclusion: Compared with the LCP+LAP, the OBS showed superior biomechanical results. Furthermore, the OBS has the advantage of multiple choices and high flexibility of combinations. Stress dispersion was helpful in avoiding internal fixation failure during early postoperative functional exercise.


2021 ◽  
Author(s):  
Long Zhang ◽  
Md Ariful Haque ◽  
Ying Xiong ◽  
Jing Qin ◽  
Luyun Liu ◽  
...  

Abstract Background and Objective: The incidence of periprosthetic fracture increases with the increase of total hip arthroplasty. The treatment of periprosthetic fracture is always a difficult point. The bridged combined internal fixation system (Ortho-bridge System, OBS) is well adapted to the characteristics of periprosthetic fractures.In this study, finite element analysis was used to evaluate the optimal configuration of OBS for fixation of Vancouver B1 periprosthetic femoral fractures.Methods: A three-rod combination OBS fixation model was established to evaluate the optimal position of the third rod, the cross Angle of proximal screws, the diameter of the connecting rod, and the number of screws. Femoral displacement and the maximum Von Mises (equivalent) stress of OBS were used as evaluation indexes.Results: The third rod is located at 35mm below the lateral fovea of the femur and the minimum Von Mises peak stress of OBS, which is the best location for placing the third rod. It is feasible for proximal screw intersection Angle to be about 71° and 84°.To fix the strength, the 6mm connecting rod is better. Considering the number of screws scheme comprehensively, scheme D is the best number of screws scheme.Conclusion: The personalized and diversified fixation mode of OBS is well adapted to the characteristics of periprosthetic fracture and provides an effective means for the treatment of periprosthetic femoral fracture.Statement : I confirm that this manuscript has not been published or presented elsewhere in part or entirety and is not under consideration by another journal. However, you may notice that a preprint has been published in research square https://www.researchsquare.com/article/rs-661745/v1, “Finite element analysis of the optimal configuration of bridging combined internal fixation system in the treatment of Vancouver B1 periprosthetic femoral fractures”. But it's not published or under consideration by any journal.


2021 ◽  
Vol 108 (Supplement_6) ◽  
Author(s):  
K L Ang ◽  
W Cheah ◽  
H Jesani ◽  
R Ooi ◽  
S Agarwal

Abstract Aim To evaluate the outcome of distal femoral replacements versus internal fixation for elderly patients with distal femoral periprosthetic fracture in a single institution. Method A five-year retrospective observational study was conducted of a consecutive series of patients with distal femoral periprosthetic fracture who underwent either distal femoral replacement (DFR) or internal fixation (IF) in a tertiary referral centre. Clinical information analysed included patient demographics, co-morbidities, interval between primary total knee arthroplasty (TKA) to distal femoral periprosthetic fracture, type of fracture, operative technique, preoperative ASA grade, post-operative complications, intensive therapy unit (ITU) stay, length of hospital stay (LOS), re-fixation and mortality. Results Study included 27 patients of which fourteen patients underwent a DFR while 13 underwent an IF. 89% of the patients were females. Mean age of the patients at the time of fracture was 85 versus 80 (DFR vs IF). The mean interval from the primary TKA to the fracture were 80 months (range 0-181). There were no intraoperative complications in either group. Three patients required ITU stay from the DFR group while one patient from the IF group required re-fixation. Median LOS was 56 days (range 9-144) after DFR and 55 days (range 4-83) after IF. There was one 30-day mortality in the DFR group. One-year mortality for the DFR group was 7% vs 15% for the IF group. Conclusions In our study, DFR and IF were observed to have similar LOS with a higher mortality in the IF group at one year. There was one re-fixation in the IF group.


Author(s):  
Kevin Döring ◽  
Klemens Vertesich ◽  
Luca Martelanz ◽  
Kevin Staats ◽  
Christoph Böhler ◽  
...  

Abstract Introduction Multiple revision hip arthroplasties and critical trauma might cause severe bone loss that requires proximal femoral replacement (PFR). The aim of this retrospective study was to analyse complication- and revision-free survivals of patients who received modular megaprostheses in an attempt to reconstruct massive non-neoplastic bone defects of the proximal femur. Questions/purposes (1) What were general complication rates and revision-free survivals following PFR? (2) What is the incidence of complication specific survivals? (3) What were risk factors leading to a diminished PFR survival? Materials and methods Twenty-eight patients with sufficient follow-up after receiving a modular proximal femoral megaprosthesis were identified. The indications for PFR included prosthetic joint infection (PJI), periprosthetic fracture, aseptic loosening, non-union and critical femoral fracture. Complications were grouped according to the ISOLS-classification of segmental endoprosthetic failure by Henderson et al. Results Overall, the complication-free survival was 64.3% at one year, 43.2% at five years and 38.4% at ten years, with 16 patients (57%) suffering at least one complication. Complications were dislocation in eight patients (29%), PJI in 6 patients (21%), periprosthetic fracture in five patients (18%), and aseptic loosening in six patients (21%). Prosthesis stem cementation showed a lower risk for revision in a cox proportional hazard model (95% CI 0.04–0.93, HR 0.2, p = 0.04). Conclusion PFR with modular megaprostheses represents a viable last resort treatment with high complication rates for patients with severe proximal femoral bone loss due to failed arthroplasty or critical fractures. In revision arthroplasty settings, PFR cementation should be advocated in cases of impaired bone quality.


2021 ◽  
Author(s):  
Long Zhang ◽  
Md Ariful Haque ◽  
Ying Xiong ◽  
Jing Qin ◽  
Luyun Liu ◽  
...  

Abstract Background and Objective: The incidence of periprosthetic fracture increases with the increase of total hip arthroplasty. The treatment of periprosthetic fracture is always a difficult point. The bridged combined internal fixation system (Ortho-bridge System, OBS) is well adapted to the characteristics of periprosthetic fractures.In this study, finite element analysis was used to evaluate the optimal configuration of OBS for fixation of Vancouver B1 periprosthetic femoral fractures.Methods: A three-rod combination OBS fixation model was established to evaluate the optimal position of the third rod, the cross Angle of proximal screws, the diameter of the connecting rod, and the number of screws. Femoral displacement and the maximum Von Mises (equivalent) stress of OBS were used as evaluation indexes.Results: The third rod is located at 35mm below the lateral fovea of the femur and the minimum Von Mises peak stress of OBS, which is the best location for placing the third rod. It is feasible for proximal screw intersection Angle to be about 71° and 84°.To fix the strength, the 6mm connecting rod is better. Considering the number of screws scheme comprehensively, scheme D is the best number of screws scheme.Conclusion: The personalized and diversified fixation mode of OBS is well adapted to the characteristics of periprosthetic fracture and provides an effective means for the treatment of periprosthetic femoral fracture.


Sign in / Sign up

Export Citation Format

Share Document