scholarly journals Hybrids of Support Vector Regression with Grey Wolf Optimizer and Firefly Algorithm for Spatial Prediction of Landslide Susceptibility

2021 ◽  
Vol 13 (24) ◽  
pp. 4966
Author(s):  
Ru Liu ◽  
Jianbing Peng ◽  
Yanqiu Leng ◽  
Saro Lee ◽  
Mahdi Panahi ◽  
...  

Landslides are one of the most frequent and important natural disasters in the world. The purpose of this study is to evaluate the landslide susceptibility in Zhenping County using a hybrid of support vector regression (SVR) with grey wolf optimizer (GWO) and firefly algorithm (FA) by frequency ratio (FR) preprocessed. Therefore, a landslide inventory composed of 140 landslides and 16 landslide conditioning factors is compiled as a landslide database. Among these landslides, 70% (98) landslides were randomly selected as the training dataset of the model, and the other landslides (42) were used to verify the model. The 16 landslide conditioning factors include elevation, slope, aspect, plan curvature, profile curvature, distance to faults, distance to rivers, distance to roads, sediment transport index (STI), stream power index (SPI), topographic wetness index (TWI), normalized difference vegetation index (NDVI), landslide, rainfall, soil and lithology. The conditioning factors selection and spatial correlation analysis were carried out by using the correlation attribute evaluation (CAE) method and the frequency ratio (FR) algorithm. The area under the receiver operating characteristic curve (AUROC) and kappa data of the training dataset and validation dataset are used to evaluate the prediction ability and the relationship between the advantages and disadvantages of landslide susceptibility maps. The results show that the SVR-GWO model (AUROC = 0.854) has the best performance in landslide spatial prediction, followed by the SVR-FA (AUROC = 0.838) and SVR models (AUROC = 0.818). The hybrid models of SVR-GWO and SVR-FA improve the performance of the single SVR model, and all three models have good prospects for regional-scale landslide spatial modeling.

Author(s):  
Yue Wang ◽  
Deliang Sun ◽  
Haijia Wen ◽  
Hong Zhang ◽  
Fengtai Zhang

To compare the random forest (RF) model and the frequency ratio (FR) model for landslide susceptibility mapping (LSM), this research selected Yunyang Country as the study area for its frequent natural disasters; especially landslides. A landslide inventory was built by historical records; satellite images; and extensive field surveys. Subsequently; a geospatial database was established based on 987 historical landslides in the study area. Then; all the landslides were randomly divided into two datasets: 70% of them were used as the training dataset and 30% as the test dataset. Furthermore; under five primary conditioning factors (i.e., topography factors; geological factors; environmental factors; human engineering activities; and triggering factors), 22 secondary conditioning factors were selected to form an evaluation factor library for analyzing the landslide susceptibility. On this basis; the RF model training and the FR model mathematical analysis were performed; and the established models were used for the landslide susceptibility simulation in the entire area of Yunyang County. Next; based on the analysis results; the susceptibility maps were divided into five classes: very low; low; medium; high; and very high. In addition; the importance of conditioning factors was ranked and the influence of landslides was explored by using the RF model. The area under the curve (AUC) value of receiver operating characteristic (ROC) curve; precision; accuracy; and recall ratio were used to analyze the predictive ability of the above two LSM models. The results indicated a difference in the performances between the two models. The RF model (AUC = 0.988) performed better than the FR model (AUC = 0.716). Moreover; compared with the FR model; the RF model showed a higher coincidence degree between the areas in the high and the very low susceptibility classes; on the one hand; and the geographical spatial distribution of historical landslides; on the other hand. Therefore; it was concluded that the RF model was more suitable for landslide susceptibility evaluation in Yunyang County; because of its significant model performance; reliability; and stability. The outcome also provided a theoretical basis for application of machine learning techniques (e.g., RF) in landslide prevention; mitigation; and urban planning; so as to deliver an adequate response to the increasing demand for effective and low-cost tools in landslide susceptibility assessments.


Forests ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 118 ◽  
Author(s):  
Viet-Hung Dang ◽  
Nhat-Duc Hoang ◽  
Le-Mai-Duyen Nguyen ◽  
Dieu Tien Bui ◽  
Pijush Samui

This study developed and verified a new hybrid machine learning model, named random forest machine (RFM), for the spatial prediction of shallow landslides. RFM is a hybridization of two state-of-the-art machine learning algorithms, random forest classifier (RFC) and support vector machine (SVM), in which RFC is used to generate subsets from training data and SVM is used to build decision functions for these subsets. To construct and verify the hybrid RFM model, a shallow landslide database of the Lang Son area (northern Vietnam) was prepared. The database consisted of 101 shallow landslide polygons and 14 conditioning factors. The relevance of these factors for shallow landslide susceptibility modeling was assessed using the ReliefF method. Experimental results pointed out that the proposed RFM can help to achieve the desired prediction with an F1 score of roughly 0.96. The performance of the RFM was better than those of benchmark approaches, including the SVM, RFC, and logistic regression. Thus, the newly developed RFM is a promising tool to help local authorities in shallow landslide hazard mitigations.


2019 ◽  
Vol 9 (14) ◽  
pp. 2824 ◽  
Author(s):  
Nguyen ◽  
Tuyen ◽  
Shirzadi ◽  
Pham ◽  
Shahabi ◽  
...  

We proposed an innovative hybrid intelligent approach, namely, the multiboost based naïve bayes trees (MBNBT) method for the spatial prediction of landslides in the Mu Cang Chai District of Yen Bai Province, Vietnam. The MBNBT, which is an ensemble of the multiboost (MB) and naïve bayes trees (NBT) base classifier, has rarely been applied for landslide susceptibility mapping around the world. For the modeling, we selected 248 landslide locations in the hilly terrain of the study area. Fifteen landslide conditioning factors were selected for the construction of the database based on the one-R attribute evaluation (ORAE) technique. Model validation was done using statistical metrics, namely, sensitivity, specificity, accuracy, mean absolute error (MAE), root mean square error (RMSE), and the area under the receiver operating characteristics curve (AUC). Performance of the hybrid model was evaluated and compared with popular soft computing benchmark models, namely, multiple perceptron neural network (MLPN), Support Vector Machines (SVM), and single NBT. Results indicated that the proposed MBNBT (AUC = 0.824) model outperformed the popular models, namely, the MLPN (AUC = 0.804), SVM (AUC = 0.804), and NBT (AUC = 0.800) models. Analysis of the model results also suggested that the MB meta classifier ensemble model could enhance the prediction power of the NBT model. Therefore, the MBNBT is a suitable method for the assessment of landslide susceptibility in landslide prone areas.


Sign in / Sign up

Export Citation Format

Share Document