Interval of restitution coefficient for chattering in impact damper

Author(s):  
Zongqi Li ◽  
Yanchen Du

Based on the impact damper, a dynamic model of a non-fixed constrained collision system was established. The coefficient of restitution is used as the main control parameter to analyze the system’s periodic movement and its bifurcation region. The chattering movement characteristics of the system were revealed. The interval of restitution coefficient for the chattering of collision system under various mass ratio and frequency ratio was obtained. The results show that the chattering phenomenon occurs in the collision system when the coefficient of restitution is greater than 0.5; as the mass ratio decreases, the interval of restitution coefficient for chattering continues to expand; as the frequency increases, the interval of restitution coefficient for chattering narrows.

Author(s):  
Tomohiro Ito ◽  
Katsuhisa Fujita ◽  
Naotoshi Okaya

Conventional impact dampers often utilize the steel balls because of its low cost and handling easiness. But the steel-ball impact dampers sometimes collapse or generate very large noise because of large shock at the impact. And as for the design of the impact damper, in the conventional approaches, the analytical modeling for the impact force is based on the contact theory proposed by H. Hertz, in which the restitution coefficient is assumed to be constant, i.e., the dependency on the relative velocity is not taken into consideration. However, some experimental results show that the restitution coefficient depends on the relative velocity at the impact. In this study, the elasto-plastic materials are employed as an impact damper material in order to suppress the large shock for the damper vessel and large impact noise. Therefore, the impact force modeling is modified so as that the elasto-plasticity of the material can be considered. This modeling can also consider the dependency of the restitution coefficient on the relative velocity. An impact damper which composed of a vessel and several particles made of elasto-plastic material such as lead is treated. The frequency response of the damper vessel and the damping effect of the damper are evaluated for the 2 kinds of impact force modeling by numerical simulations. Also, the effects of the particle number and the vessel configuration are evaluated. As a result, the effects of the above mentioned parameters are clarified.


1975 ◽  
Vol 97 (3) ◽  
pp. 859-866 ◽  
Author(s):  
M. D. Thomas ◽  
W. A. Knight ◽  
M. M. Sadek

The dynamic behavior of three different designs of a cantilever boring bar are compared by means of forced vibration tests. These are a bar with diametrically opposed flats machined along its length, a bar fabricated from laminates of steel and a damping compound, and a bar fitted with an impact damper. The impact damper boring bar is found to be the most effective, and an improved design, giving increases in stable metal removal rates of more than 100 percent, is outlined and tested. A theoretical analysis is presented for predicting the effectiveness of the impact damper with a spring supported impacting mass. This analysis enables the optimum mass ratio and gap setting of the damper to be selected for specified characteristics of the vibrating systems to which the damper is fitted.


2005 ◽  
Vol 11 (4) ◽  
pp. 459-479 ◽  
Author(s):  
F. Peterka ◽  
B. Blazejczyk-Okolewska

In this paper we show some aspects of the dynamical behavior of a two-degrees-of-freedom system forced with an external harmonic force, which impacts cause a reduction of the vibration amplitude of the basic system. The purpose of the presented investigations is to determine the coefficient of restitution and the damping coefficient of the fender that ensure the required degree of a reduction in these vibrations. The regions of existence bifurcation diagrams and motion trajectories of different kinds of impact motion are presented and analyzed. The impact damper of vibrations is compared with a linear damper. The investigations have been conducted by means of numerical simulations.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1540
Author(s):  
Mirosław Kwiatkowski ◽  
Xin Hu

This paper presents results of the analysis of the impact of activation temperature and mass ratio of activator to carbonized precursor R on the porous structure of nitrogen-doped activated carbons derived from lotus leaves by carbonization and chemical activation with sodium amide NaNH2. The analyses were carried out via the new numerical clustering-based adsorption analysis (LBET) method applied to nitrogen adsorption isotherms at −195.8 °C. On the basis of the results obtained it was shown that the amount of activator, as compared to activation temperatures, has a significantly greater influence on the formation of the porous structure of activated carbons. As shown in the study, the optimum values of the porous structure parameters are obtained for a mass ratio of R = 2. At a mass ratio of R = 3, a significant decrease in the values of the porous structure parameters was observed, indicating uncontrolled wall firing between adjacent micropores. The conducted analyses confirmed the validity of the new numerical clustering-based adsorption analysis (LBET) method, as it turned out that nitrogen-doped activated carbons prepared from lotus leaves are characterized by a high share of micropores and a significant degree of surface heterogeneity in most of the samples studied, which may, to some extent, undermine the reliability of the results obtained using classical methods of structure analysis that assume only a homogeneous pore structure.


2013 ◽  
Vol 284-287 ◽  
pp. 557-561
Author(s):  
Jie Li Fan ◽  
Wei Ping Huang

The two-degrees-of-freedom VIV of the circular cylinder with high mass-ratio is numerically simulated with the software ANSYS/CFX. The VIV characteristic is analyzed in the different conditions (Ur=3, 5, 6, 8, 10). When Ur is 5, 6, 8 and 10, the conclusion which is different from the cylinder with low mass-ratio can be obtained. When Ur is 3, the frequency of in-line VIV is twice of that of cross-flow VIV which is equal to the frequency ratio between drag force and lift force, and the in-line amplitude is much smaller than the cross-flow amplitude. The motion trace is the crescent. When Ur is 5 and 6, the frequency ratio between the drag force and lift force is still 2, but the main frequency of in-line VIV is mainly the same as that of cross-flow VIV and the secondary frequency of in-line VIV is equal to the frequency of the drag force. The in-line amplitude is still very small compared with the cross-flow amplitude. When Ur is up to 8 and 10, the frequency of in-line VIV is the same as the main frequency of cross-flow VIV which is close to the inherent frequency of the cylinder and is different from the frequency of drag force or lift force. But the secondary frequency of cross-flow VIV is equal to the frequency of the lift force. The amplitude ratio of the VIV between in-line and cross-flow direction is about 0.5. When Ur is 5, 6, 8 and 10, the motion trace is mainly the oval.


2008 ◽  
Vol 130 (2) ◽  
Author(s):  
Sanjiv Ramachandran ◽  
George Lesieutre

Particle impact dampers (PIDs) have been shown to be effective in vibration damping. However, our understanding of such dampers is still limited, based on the theoretical models existing today. Predicting the performance of the PID is an important problem, which needs to be investigated more thoroughly. This research seeks to understand the dynamics of a PID as well as those parameters which govern its behavior. The system investigated is a particle impact damper with a ceiling, under the influence of gravity. The base is harmonically excited in the vertical direction. A two-dimensional discrete map is obtained, wherein the variables at one impact uniquely dictate the variables at the next impact. This map is solved using a numerical continuation procedure. Periodic impact motions and “irregular” motions are observed. The effects of various parameters such as the gap clearance, coefficient of restitution, and the base acceleration are analyzed. The dependence of the effective damping loss factor on these parameters is also studied. The loss factor results indicate peak damping for certain combinations of parameters. These combinations of parameters correspond to a region in parameter space where two-impacts-per-cycle motions are observed over a wide range of nondimensional base accelerations. The value of the nondimensional acceleration at which the onset of two-impacts-per-cycle solutions occurs depends on the nondimensional gap clearance and the coefficient of restitution. The range of nondimensional gap clearances over which two-impacts-per-cycle solutions are observed increases as the coefficient of restitution increases. In the regime of two-impacts-per-cycle solutions, the value of nondimensional base acceleration corresponding to onset of these solutions initially decreases and then increases with increasing nondimensional gap clearance. As the two-impacts-per-cycle solutions are associated with high loss factors that are relatively insensitive to changing conditions, they are of great interest to the designer.


Author(s):  
Akshay Mallikarjuna ◽  
Dan Marghitu ◽  
P.K. Raju

— In this study, an optimized method to simulate the dynamic 3D event of the impact of a rod with a flat surface has been presented. Unlike the 2D FEM based contact models, in this study both the bodies undergoing the impact are considered elastic(deformable) and simulation is the dynamic event of the impact, instead of predefined 2D symmetric contact analysis. Prominent contact models and plasticity models to define material properties in ANSYS are reviewed. Experimentation results of normal and oblique impact of the rod for different rods provided the coefficient of restitution. Experimental results of permanent deformation on the base for different impact velocity is derived out of a prominent impact study. The simulation results are in co-relation with experiment and both indentation and flattening models on the coefficient of restitution (COR) and permanent deformation of the base and rod after the impact. Thus, the presented 3D Explicit Dynamic simulation of impact is validated to analyze the impact behavior of the 2 bodies without any predefined assumptions with respect to boundary conditions or material properties.


Author(s):  
M. R. W. Brake ◽  
P. L. Reu ◽  
D. S. Aragon

The results of two sets of impact experiments are reported within. To assist with model development using the impact data reported, the materials are mechanically characterized using a series of standard experiments. The first set of impact data comes from a series of coefficient of restitution (COR) experiments, in which a 2 m long pendulum is used to study “in-context” measurements of the coefficient of restitution for eight different materials (6061-T6 aluminum, phosphor bronze alloy 510, Hiperco, nitronic 60A, stainless steel 304, titanium, copper, and annealed copper). The coefficient of restitution is measured via two different techniques: digital image correlation (DIC) and laser Doppler vibrometry (LDV). Due to the strong agreement of the two different methods, only results from the digital image correlation are reported. The coefficient of restitution experiments are in context as the scales of the geometry and impact velocities are representative of common features in the motivating application for this research. Finally, a series of compliance measurements are detailed for the same set of materials. The compliance measurements are conducted using both nano-indentation and micro-indentation machines, providing sub-nm displacement resolution and μN force resolution. Good agreement is seen for load levels spanned by both machines. As the transition from elastic to plastic behavior occurs at contact displacements on the order of 30 nm, this data set provides a unique insight into the transitionary region.


2015 ◽  
Vol 801 ◽  
pp. 25-32
Author(s):  
Ozdes Cermik ◽  
Hamid Ghaednia ◽  
Dan B. Marghitu

In the current study a flattening contact model, combined with a permanent deformation expression, has been analyzed for the oblique impact case. The model has been simulated for different initial conditions using MATLAB. The initial impact velocity used for the simulations ranges from 0.5 to 3 m/s. The results are compared theoretically for four different impact angles including 20, 45, 70, and 90 degrees. The contact force, the linear and the angular motion, the permanent deformation, and the coefficient of restitution have been analyzed. It is assumed that sliding occurs throughout the impact.


2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Shuo Yu ◽  
Hequn Li

To obtain the melt cast booster explosive formulation with high energy and low critical detonation diameter, melt cast explosives were designed by 3,4-bis(3-nitrofurazan-4-yl)furoxan (DNTF)/2,4,6-trinitrotoluene (TNT)/glycidyl azide polymer-energetic thermoplastic elastomer (GAP-ETPE)/nano-1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX)/Aristowax. Furthermore, the impact sensitivity, small scale gap test, rheological properties, propagation reliability, and detonation velocity were measured and analyzed. The results show that when the mass ratio of DNTF/TNT/GAP-ETPE/nano-HMX/Aristowax is 34.2/22.8/2/40/1, not only does it indicate excellent rheological property but it has a brilliant safety performance as well. Moreover, it can propagate the detonation waves successfully in the groove at 0.7 mm × 0.7 mm. When the charge density in the groove is 1.70 g·cm−3, its detonation velocity can reach 7890 m·s−1.


Sign in / Sign up

Export Citation Format

Share Document