carotenoid supplementation
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 8)

H-INDEX

18
(FIVE YEARS 0)

Nutrients ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 3191
Author(s):  
Stuart Richer ◽  
Steven Novil ◽  
Taylor Gullett ◽  
Avni Dervishi ◽  
Sherwin Nassiri ◽  
...  

Twilight and low luminance levels are visually challenging environments for the elderly, especially when driving at night. Carotenoid rich diets are known to increase macular pigment optical density (MPOD), which in turn leads to an improvement in visual function. It is not known whether augmenting MPOD can lead to a decrease in vision related night driving difficulties. Additionally, it is unknown if carotenoid supplementation provides additional measurable benefits to one’s useful field of view (UFOV) along with a decreased composite crash risk score. The aim of the study was to evaluate changes in night vision function and UFOV in individuals that took carotenoid vitamin supplements for a six-month period compared to a placebo group. Methods: A prospective, randomized, double-blind, six-month trial of a 14 mg zeaxanthin/7 mg lutein-based supplement was carried out. Participants were randomized into active or placebo group (approx 2:1). Results: n = 33 participants (26 males/7 females) participated with 93% capsule intake compliance in the supplemented group (n = 24) and placebo group (n = 9). MPOD (mean/standard error SE) in the active group increased in the Right eye from 0.35 density units (du)/0.04 SE to 0.41 du/0.05 SE; p < 0.001 and in the Left eye from 0.35 du/0.05 SE to 0.37 du, p > 0.05). The supplemented group showed significant improvements in contrast sensitivity with glare in both eyes with improvements in LogMAR scores of 0.147 and 0.149, respectively (p = 0.02 and 0.01, respectively), monocularly tested glare recovery time improved 2.76 and 2.54 s, respectively, (p = 0.008 and p = 0.02), and we also noted a decreased preferred luminance required to complete visual tasks (p = 0.02 and 0.03). Improvements in UFOV scores of divided attention (p < 0.001) and improved composite crash risk score (p = 0.004) were seen in the supplemented group. The placebo group remained unchanged. Conclusions: The NVC demonstrates that augmenting MPOD in individuals with difficulty in night vision showed measurable benefits in numerous visual functions that are important for night vision driving in this small sample RCT. Additionally, we observed an improvement in UFOV divided attention test scores and decreased composite risk scores.


Trials ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Emmanuel Kofi Addo ◽  
Aruna Gorusupudi ◽  
Susan Allman ◽  
Paul S. Bernstein

Abstract Background Lutein (L), zeaxanthin (Z), and meso-zeaxanthin (MZ), collectively called the macular pigment (MP), are dietary carotenoids that preferentially localize in the macula of the human eye. MP protects the macula from photo-oxidative damage and enhances visual function. Inadequate maternal intake of carotenoids, coupled with the placental transfer of maternal carotenoids to support fetal brain and retina development, potentially put mothers at risk of depletion systemically and in their ocular tissues. Presently, maternal carotenoid status throughout pregnancy remains poorly characterized, and no prospective randomized controlled trial of L and Z supplementation via prenatal vitamins has assessed maternal and infants’ systemic and ocular carotenoid status during pregnancy. We hypothesize that prenatal maternal carotenoid supplementation will counteract maternal carotenoid depletion during pregnancy and will improve biomarkers of carotenoid status of both mothers and infants. Methods Lutein and Zeaxanthin in Pregnancy (L-ZIP) is a phase 2, single-center, prospective, double-masked, randomized active-controlled clinical trial conducted at the John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA. Participants consume a daily standard prenatal multivitamin with no added carotenoids and are randomized (1:1 allocation) to receive either a capsule containing 10 mg L and 2 mg Z in safflower oil (Carotenoid group) or a capsule containing only safflower oil with no added carotenoids (Control group) for a period of 6 to 8 months. Skin, serum, and ocular carotenoids are measured at every study visit (i.e., within the first trimester [baseline], second trimester, third trimester, and 0–2 weeks postpartum). Skin carotenoid assessment is by resonance Raman spectroscopy (RRS); serum carotenoid status is quantified using high-performance liquid chromatography (HPLC); and MP is measured with the dual-wavelength autofluorescence. Infants’ MP and foveal anatomy are assessed using RetCam retinal camera and Bioptigen SD-OCT, respectively. The primary outcomes are changes in maternal systemic and ocular carotenoid status during pregnancy. Discussion L-ZIP is the first prospective RCT to investigate maternal carotenoid status throughout pregnancy and to determine whether prenatal maternal carotenoid supplementation will offset maternal carotenoid depletion and improve biomarkers of maternal and infant’s carotenoid status. Findings from L-ZIP will strengthen recommendations regarding prenatal carotenoid supplementation and consequently inform policy decisions. Trial registration ClinicalTrials.gov NCT03750968. Registered on November 23, 2018


2020 ◽  
Vol 10 (11) ◽  
pp. 4968-4978
Author(s):  
Jorge García‐Campa ◽  
Wendt Müller ◽  
Sonia González‐Braojos ◽  
Emilio García‐Juárez ◽  
Judith Morales

Behaviour ◽  
2020 ◽  
Vol 157 (2) ◽  
pp. 121-142
Author(s):  
Emma P. McInerney ◽  
Aimee J. Silla ◽  
Phillip G. Byrne

Abstract Many animals hibernate to survive winter conditions, however, arousal from hibernation generates reactive oxygen species (ROS) that can cause oxidative stress. Dietary antioxidants, like carotenoids, may reduce oxidative stress during arousal from hibernation, and assist with post-hibernation recovery and performance. We tested the effect of carotenoid supplementation on exercise performance (escape-response and activity) in southern corroboree frogs (Pseudophryne corroboree) following initial arousal from hibernation (24–48 h post-arousal) and post-recovery (six weeks post-hibernation). Carotenoids did not affect performance following initial arousal. However, carotenoids improved escape-response six weeks post-hibernation, with carotenoid-supplemented frogs hopping faster and further in their first hop than unsupplemented frogs. Carotenoids also affected post-recovery activity, with carotenoid-supplemented frogs being less mobile than unsupplemented frogs. Carotenoids may affect post-hibernation performance by reducing oxidative stress or by increasing diet quality. Our study provides novel evidence for an effect of carotenoids on performance post-hibernation and highlights the importance of nutrition to hibernating organisms.


2019 ◽  
Vol 33 (S1) ◽  
Author(s):  
Alex E Mohr ◽  
Marc Girard ◽  
Melissah Rowe ◽  
Kevin J McGraw ◽  
Karen L Sweazea

2017 ◽  
Vol 108 ◽  
pp. 77-85 ◽  
Author(s):  
O.S. Ademowo ◽  
H.K.I. Dias ◽  
I. Milic ◽  
A. Devitt ◽  
R. Moran ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document