chemical migration
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 8)

H-INDEX

9
(FIVE YEARS 1)

PLoS Biology ◽  
2021 ◽  
Vol 19 (3) ◽  
pp. e3000961
Author(s):  
Jane Muncke

The widespread use of plastic packaging for storing, transporting, and conveniently preparing or serving foodstuffs is significantly contributing to the global plastic pollution crisis. This has led to many efforts directed toward amending plastic packaging’s end of life, such as recycling, or alternative material approaches, like increasingly using paper for food packaging. But these approaches often neglect the critical issue of chemical migration: When contacting foodstuffs, chemicals that are present in packaging transfer into food and thus unwittingly become part of the human diet. Hazardous chemicals, such as endocrine disrupters, carcinogens, or substances that bioaccumulate, are collectively referred to as “chemicals of concern.” They can transfer from plastic packaging into food, together with other unknown or toxicologically uncharacterized chemicals. This chemical transfer is scientifically undisputed and makes plastic packaging a known, and avoidable, source of human exposure to synthetic, hazardous, and untested chemicals. Here, I discuss this issue and highlight aspects in need of improvement, namely the way that chemicals present in food packaging are assessed for toxicity. Further, I provide an outlook on how chemical contamination from food packaging could be addressed in the future. Robust innovations must attempt systemic change and tackle the issue of plastic pollution and chemical migration in a way that integrates all existing knowledge.


2019 ◽  
Vol 30 (3) ◽  
pp. 469-477
Author(s):  
Mélanie Douziech ◽  
Ana Benítez-López ◽  
Alexi Ernstoff ◽  
Cecilia Askham ◽  
A. Jan Hendriks ◽  
...  
Keyword(s):  

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Jierui Li ◽  
Weidong Liu ◽  
Guangzhi Liao ◽  
Linghui Sun ◽  
Sunan Cong ◽  
...  

With a long sand-packed core with multiple sample points, a laboratory surfactant-polymer flooding experiment was performed to study the emulsification mechanism, chemical migration mechanism, and the chromatographic separation of surfactant-polymer flooding system. After water flooding, the surfactant-polymer flooding with an emulsified system enhances oil recovery by 17.88%. The water cut of produced fluid began to decrease at the injection of 0.4 pore volume (PV) surfactant-polymer slug and got the minimum at 1.2 PV. During the surfactant-polymer flooding process, the loss of polymer is smaller than that of surfactant, the dimensionless breakthrough time of polymer is 1.092 while that of surfactant is 1.308, and the dimensionless equal concentration distance of the chemical is 0.65. During surfactant-polymer flooding, the concentration of surfactant controls the formation of the emulsion. From 50 cm to 600 cm, as the migration distance increases, the concentration of surfactant decreases, and the emulsification strength and duration decrease gradually. With the formation of emulsion, the viscosity of the emulsion is relatively stable, which is beneficial to enhanced oil recovery. With the shear of reservoirs and migration of surfactant-polymer slug, the emulsion is formed to improve the swept volume and sweep efficiency and enhance oil recovery.


2018 ◽  
Vol 195 ◽  
pp. 280-303 ◽  
Author(s):  
Dirk Mallants ◽  
Rob Jeffrey ◽  
Xi Zhang ◽  
Bailin Wu ◽  
James Kear ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document