hydrothermal flow
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 16)

H-INDEX

23
(FIVE YEARS 2)

Author(s):  
Edis Glogic ◽  
Marie Claverie ◽  
Muhammad Jubayed ◽  
Valentina Musumeci ◽  
Christel Carême ◽  
...  

2021 ◽  
Vol 9 (6) ◽  
pp. 2559-2569 ◽  
Author(s):  
Ioan-Alexandru Baragau ◽  
Nicholas P. Power ◽  
David J. Morgan ◽  
Richard A. Lobo ◽  
Christopher S. Roberts ◽  
...  

2021 ◽  
Vol 405 ◽  
pp. 126631 ◽  
Author(s):  
Ioan-Alexandru Baragau ◽  
Zhen Lu ◽  
Nicholas P. Power ◽  
David J. Morgan ◽  
James Bowen ◽  
...  

Author(s):  
F. Vehling ◽  
J. Hasenclever ◽  
L. Rüpke

AbstractNumerical models have become indispensable tools for investigating submarine hydrothermal systems and for relating seafloor observations to physicochemical processes at depth. Particularly useful are multiphase models that account for phase separation phenomena, so that model predictions can be compared to observed variations in vent fluid salinity. Yet, the numerics of multiphase flow remain a challenge. Here we present a novel hydrothermal flow model for the system H2O–NaCl able to resolve multiphase flow over the full range of pressure, temperature, and salinity variations that are relevant to submarine hydrothermal systems. The method is based on a 2-D finite volume scheme that uses a Newton–Raphson algorithm to couple the governing conservation equations and to treat the non-linearity of the fluid properties. The method uses pressure, specific fluid enthalpy, and bulk fluid salt content as primary variables, is not bounded to the Courant time step size, and allows for a direct control of how accurately mass and energy conservation is ensured. In a first application of this new model, we investigate brine formation and mobilization in hydrothermal systems driven by a transient basal temperature boundary condition—analogue to seawater circulation systems found at mid-ocean ridges. We find that basal heating results in the rapid formation of a stable brine layer that thermally insulates the driving heat source. While this brine layer is stable under steady-state conditions, it can be mobilized as a consequence of variations in heat input leading to brine entrainment and the venting of highly saline fluids.


2020 ◽  
Vol 26 (29) ◽  
pp. 6447-6460 ◽  
Author(s):  
Uthman Alli ◽  
Sunil J. Hettiarachchi ◽  
Suela Kellici

2020 ◽  
Author(s):  
Gaétan Milesi ◽  
Monié Patrick ◽  
Philippe Münch ◽  
Roger Soliva ◽  
Sylvain Mayolle ◽  
...  

<p>The Têt fault is a crustal scale major fault in the eastern Pyrenees that displays about 30 hot springs along its surface trace with temperatures between 29°C and 73°C. The regional process of fluid circulation at depth has previously been highlighted by thermal numerical modelling supported by hydrochemical analyses and tectonic study. Numerical modelling suggests the presence of a strong subsurface anomaly of temperature along-fault (locally > 90°C/km), governed by topography-driven meteoric fluid upflow through the fault damage zone (advection). On the basis of this modelling, we focused our thermochronological study on 30 samples collected close and between two hot spring clusters in both the hanging wall and the footwall of the Têt fault, where the most important thermal anomaly is recorded by models. We analysed apatite using (U-Th)/He (AHe) dating combined with REE analyses on the same dated grains.</p><p>Along the fault, AHe ages are in a range of 26 to 8 Ma in the footwall and 43 and 18 Ma in the hanging wall, and only few apatite grains have been impacted by hydrothermalism near the St-Thomas hot spring cluster. By contrast, particularly young AHe ages below 6 Ma, correlated to REE depletion, are found around the Thuès-les-bains hot spring cluster. These very young ages are therefore interpreted as thermal resetting due to an important hydrothermal activity. A thermal anomaly can be mapped and appears restricted to 1 km around this cluster of hot springs, i.e. more restricted than the size of the anomaly predicted by numerical models. These results reveal that AHe dating and REE analyses can be used to highlight neo- or paleo-hydrothermal anomaly recorded by rocks along faults.</p><p>This study brings new elements to discuss the onset of the hydrothermal circulations and consequences on AHe and REE mobilisation, and suggest a strong heterogeneity of the hydrothermal flow pattern into the fault damage zone. Moreover, this study suggests that crustal scale faults adjacent to reliefs can localise narrow high hydrothermal flow and important geothermal gradient.  Besides these results, this study provides new constraints for geothermal exploration around crustal faults, as well as a discussion on the use of thermochronometers into fault damage zones. </p>


Sign in / Sign up

Export Citation Format

Share Document