scholarly journals Cell on Wheels-Unmanned Aerial Vehicle System for Providing Wireless Coverage in Emergency Situations

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Hazim Shakhatreh ◽  
Khaled Hayajneh ◽  
Khaled Bani-Hani ◽  
Ahmad Sawalmeh ◽  
Muhammad Anan

Due to natural disasters, unmanned aerial vehicles (UAVs) can be deployed as aerial wireless base stations when conventional cellular networks are out of service. They can also supplement the mobile ground station to provide wireless devices with improved coverage and faster data rates. Cells on wheels (CoWs) can also be utilized to provide enhanced wireless coverage for short-term demands. In this paper, a single CoW cooperates with a single UAV in order to provide maximum wireless coverage to ground users. The optimization problem is formulated to find the following: (1) the optimal 2D placement of the CoW, (2) the optimal 3D placement of the UAV, (3) the optimal bandwidth allocation, (4) the percentage of the available bandwidth that must be provided to the CoW and UAV, and (5) the priority of wireless coverage; which maximizes the number of covered users. We utilize the exhaustive search (ES) and particle swarm optimization (PSO) algorithms to solve the optimization problem. The effectiveness of the proposed algorithms is validated using simulation results.

Electronics ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1318 ◽  
Author(s):  
Ganame ◽  
Yingzhuang ◽  
Ghazzai ◽  
Kamissoko

It can be predicted that the infrastructure of the existing wireless networks will not fill the requirement of the fifth generation (5G) wireless network due to the high data rates and a large number of expected traffic. Thus, a novel deployment method is crucial to satisfy 5G features. Meta-heuristic is expected to be a promising method for the complex deployment optimization problem of the 5G network. This work presents an implementation of a meta-heuristic algorithm based on swarm intelligence, to minimize the number of base stations (BSs) and optimize their placements in millimeter wave (mmWave) frequencies (e.g., 28 GHz and 38 GHz) in the context of the 5G network while satisfying user data rates requirement. Then, an iterative method is applied to remove redundant BSs. We formulate an optimization problem that takes into account multiple 5G network deployment scenarios. Further, a comparative study is conducted with the well-known simulated annealing (SA) using Monte Carlo simulations to assess the performance of the developed model. In our simulation results, we divide the region of interest into two subareas with different user distributions for different network scenarios while considering the intercell interference. The results demonstrate that the proposed approach has better network coverage with low percentage users in outage. In addition, the developed approach has less computational times to reach the desired target network quality of service (QoS).


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Khaled F. Hayajneh ◽  
Khaled Bani-Hani ◽  
Hazim Shakhatreh ◽  
Muhammad Anan ◽  
Ahmad Sawalmeh

Unmanned aerial vehicles (UAVs), also named as drones, have become a modern model to provide a quick wireless communication infrastructure. They have been used when conventional base stations’ capacity is suffering in some extreme cases such as congestion inside the cell or a special event. This paper proposes an efficient three-dimension (3D) placement of a single UAV-assisted wireless network in such cases. Our proposed model assists the ground base station (GBS) using the UAV to serve arbitrary distributed users considering the impact of the obstacle blockage over the well-known air-to-ground (A2G) path model. This work is aimed at optimizing the percentage of available bandwidth that must be provided to the UAV in order to maximize the number of served users. In addition, it finds the 3D placement of the UAV base station (UAVBS) that maximizes the number of served users, each with maximum quality-of-service (QoS). The exhaustive search and particle swarm optimization (PSO) algorithms are used to find the problem’s solution.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4618
Author(s):  
Francisco Oliveira ◽  
Miguel Luís ◽  
Susana Sargento

Unmanned Aerial Vehicle (UAV) networks are an emerging technology, useful not only for the military, but also for public and civil purposes. Their versatility provides advantages in situations where an existing network cannot support all requirements of its users, either because of an exceptionally big number of users, or because of the failure of one or more ground base stations. Networks of UAVs can reinforce these cellular networks where needed, redirecting the traffic to available ground stations. Using machine learning algorithms to predict overloaded traffic areas, we propose a UAV positioning algorithm responsible for determining suitable positions for the UAVs, with the objective of a more balanced redistribution of traffic, to avoid saturated base stations and decrease the number of users without a connection. The tests performed with real data of user connections through base stations show that, in less restrictive network conditions, the algorithm to dynamically place the UAVs performs significantly better than in more restrictive conditions, reducing significantly the number of users without a connection. We also conclude that the accuracy of the prediction is a very important factor, not only in the reduction of users without a connection, but also on the number of UAVs deployed.


2019 ◽  
Vol 3 (1) ◽  
pp. 67-78 ◽  
Author(s):  
Doris Benda ◽  
Xiaoli Chu ◽  
Sumei Sun ◽  
Tony Q. S. Quek ◽  
Alastair Buckley

Author(s):  
M. R. AL-Obaidi ◽  
M. A. Mustafa ◽  
W.Z.W. Hassan ◽  
N. Azis ◽  
A. H. Sabry ◽  
...  

<span style="font-size: 9pt; font-family: 'Times New Roman', serif;">An efficient charging station is a necessity for Unmanned Aerial Vehicle (UAV) systems. However, if that implementation adds more complexity and onboard weight, then that exercise becomes a burden rather than a benefit since UAV's engineers aim to improve efficiency by reducing the energy consumed by the software and hardware of the complete aeronautical system. This article recommends a fully automatic contact charging station for UAVs, which can charge UAVs and thus resolve flight endurance restrictions of the UAV. The ground station consists of square copper plates that are positively and negatively polarized successively in a chessboard with particular sizes to guarantee electric contact at the landing. The design methodology used with the loading station takes into account the differences in UAV orientation once the platform has landed. In addition, this innovation uses independent charging after touchdown. Thus, this technology relaxes common flight times and help to enhance general mission times. This paper presents a unique charging platform in a “chessboard” configuration, which is devised as an interconnecting interface to facilitate the charging process and overcome inaccuracies with the landing. The solution devised in this research requires few components and presents two power source options (solar &amp; mains power). Additionally, this work presents, to the best of our knowledge, a uniquely innovative recharging landing platform, which incidentally requires no additional software or changes to the UAV’s onboard software settings</span><span style="font-size: 9pt; font-family: Arial, sans-serif;">.</span>


2020 ◽  
Author(s):  
Jinlong Wang ◽  
Gang Wang ◽  
Guanyi Chen ◽  
Bo Li ◽  
Ruofei Zhou ◽  
...  

Abstract In this paper, we investigate the resource allocation scheme for an unmanned-aerial-vehicle-enable (UAV-enabled) two-way relaying system with simultaneous wireless information and power transfer (SWIPT), where two userequipment exchange information with the help of UAV relay and harvest energythrough power splitting (PS) scheme. Under the transmission power constraintsat UEs and UAV relay, a non-convex intractable optimization problem isformulated which maximizes the sum retained energy of two UEs while satisfying the minimum signal-to-noise ratio requirement. We decouple the complicated beamforming and PS factors optimization problem into three solvable subproblems and propose an efficient alternating optimization scheme. Subsequently, in order to reduce the complexity, a robust scheme based on generalized singular value decomposition (GSVD) is designed. Finally, numerical results verify the robustness and effectiveness of two proposed schemes.


Author(s):  
Hao Yue ◽  
David Bassir ◽  
Hicham Medromi ◽  
Hua Ding ◽  
Khaoula Abouzaid

In order to overcome the propre disadvantages of FW(Fixed-Wing) and VTOL(Vertical-Taking-Off-and-Landing) UAV (Unmanned Aerial Vehicle) and extend its application, the hybrid drone is invested more in recent years by researchers and several classifications are developed on the part of dual system. In this article, an innovative hybrid UAV is raised and studied by introducing the canard configuration that is coupled with conventional delta wing as well as winglet structure. Profited by Computational Fluid Dynamics (CFD) and Response Surface Method (RSM), a multilevel optimization approach is practically presented and concerned in terms of cruise flight mode: adopted by an experienced-based distribution strategy, the total lift object is respectively assigned into the delta wing (90–95%) and canard wing(5–10%) which is applied into a two-step optimization: the first optimization problem is solved only with the parameters concerned with delta wing afterwards the second optimization is successively concluded to develop the canard configuration considering the optimized delta wing conception. Above all, the optimal conceptual design of the delta and canard wing is realized by achieving the lift goal with less drag performance in cruise mode.


Sign in / Sign up

Export Citation Format

Share Document