scholarly journals Hematological analysis of hatchery-reared and wild juveniles of pink salmon Oncorhynchus gorbuscha and chum salmon Oncorhynchus keta in Sakhalin Region

2021 ◽  
Vol 201 (3) ◽  
pp. 702-711
Author(s):  
O. V. Zelennikov ◽  
T. A. Schneider ◽  
M. Yu. Stekolshchikova

State of blood cells is examined for juveniles of pink and chum salmon sampled from Lesnoy Pugachevsky, Taranaisky and Okhotsky hatcheries in Sakhalin in May-June of 2018 and 2019 and caught in the Ochepukha, Pugachevka and Taranay Rivers during their catadromous migration to the sea. Both hatchery and wild juveniles of both species were characterized by high adaptive capabilities evidenced with high content of young forms of erythrocytes in the blood (17.0–31.0 %), significant portion of lymphocytes (60.8–92.0 %), and small number of neutrophils. The high adaptive capabilities were confirmed in the experiment, when juveniles of pink salmon were placed in the seawater without preliminary acclimation, but noticeable changes in the state of blood cells were not revealed both for wild and hatchery-reared specimens. Proportion of different blood cells was highly variable for juveniles of both artificial and natural origin but was more similar between the fry hatched at the same hatcheries or in the same rivers. A case of increased number of neutrophils was noted in 2019 for certain groups of juveniles, with total increasing of platelets in the blood that was explained by an external influence on the juveniles.

1984 ◽  
Vol 41 (10) ◽  
pp. 1446-1453 ◽  
Author(s):  
William W. Smoker

Different stock dynamics result from genetic and nongenetic mechanisms of determination of maturation age of chum salmon (Oncorhynchus keta) in a model of interacting pink (O. gorbuscha) and chum salmon stocks. When the model is disturbed from equilibrium by low survival in one pink salmon line, the genetic mechanism (high heritability of maturation age) leads to biennial cycles of numbers of even-aged chums and of numbers of pinks, similar to observed cycles. The nongenetic mechanism (zero heritability of maturation age) results in a new equlibrium at which neither stock cycles. When one pink salmon line is completely removed the genetic mechanism leads to biennial cycles of abundance of even-aged chums; the nongenetic mechanism does not lead to such cycles. These effects persist at intermediate values of heritability of maturation age and in spite of stochastic variability. The model is an adaptation of the Ricker curve to two interacting stocks, the recruitment for each depending on the density of both.


2006 ◽  
Vol 120 (2) ◽  
pp. 199
Author(s):  
Alexandra Morton ◽  
Rob Williams

Recent recurring infestations of Sea Lice, Lepeophtheirus salmonis, on juvenile Pacific salmon (Oncorhynchus spp.) and subsequent annual declines of these stocks have made it imperative to identify the source of Sea Lice. While several studies now identify farm salmon populations as sources of Sea Louse larvae, it is unclear to what extent wild salmonid hosts also contribute Sea Lice. We measured Sea Louse numbers on adult Pink Salmon (Oncorhynchus gorbuscha) migrating inshore. We also measured Sea Louse numbers on wild juvenile Pink and Chum salmon (Oncorhynchus keta) migrating to sea before the adults returned, and as the two age cohorts mingled. Adult Pink Salmon carried an average of 9.89 (SE 0.90) gravid lice per fish, and thus were capable of infecting the adjacent juveniles. Salinity and temperature remained favourable to Sea Louse reproduction throughout the study. However, all accepted measures of Sea Louse infestation failed to show significant increase on the juvenile salmon, either in overall abundance of Sea Lice or of the initial infective-stage juvenile lice, while the adult wild salmon were present in the study area. This study suggests that even during periods of peak interaction, wild adult salmon are not the primary source of the recent and unprecedented infestations of Sea Lice on juvenile Pacific Pink and Chum salmon in the inshore waters of British Columbia.


2007 ◽  
Vol 116 (4) ◽  
pp. 298-304 ◽  
Author(s):  
R.B. Phillips ◽  
J. DeKoning ◽  
M.R. Morasch ◽  
L.K. Park ◽  
R.H. Devlin

2010 ◽  
Vol 84 (4) ◽  
pp. 434-440 ◽  
Author(s):  
J. Suzuki ◽  
R. Murata ◽  
K. Sadamasu ◽  
J. Araki

AbstractWe investigated the risk of diphyllobothriasis from ingestion of wild Pacific salmon in Japan by surveying Diphyllobothrium plerocercoids in 182 salmon samples obtained from Japan. The plerocercoids were not detected in chum salmon (Oncorhynchus keta) (0/26), called Akizake in Japan, caught between September and November. However, the detection rate of plerocercoids in chum salmon, called Tokishirazu in Japan, caught between early April and June, was 51.1% (24/47) with an average of two plerocercoid larvae per fish. The detection rates of cherry salmon (Oncorhynchus masou) and pink salmon (Oncorhynchus gorbuscha) were 12.2% (10/82) and 18.5% (5/27), respectively, and the average number of plerocercoids per fish was 0.45 (37 larvae/82 fishes) and 0.22 larvae (6 larvae/27 fishes), respectively. Plerocercoids isolated from O. keta and O. masou were identified as Diphyllobothrium nihonkaiense on the basis of molecular analysis of the cox1 and nad3 genes. Moreover, four tapeworms (three from O. keta and one from O. masou) were obtained by infecting golden hamsters with plerocercoids. The morphological features of these tapeworms were similar to those of D. nihonkaiense isolated from humans. Therefore, we think that O. keta and not O. masou is the most important source of plerocercoid infections in Japan.


2006 ◽  
Vol 63 (9) ◽  
pp. 2076-2086 ◽  
Author(s):  
Morgan D Hocking ◽  
Thomas E Reimchen

Anadromous Pacific salmon (Oncorhynchus spp.) subsidize terrestrial food webs with their nutrients and carcasses, a process driven largely by selective foraging by bears (Ursus spp.). We quantify wildlife transfer of salmon carcasses to riparian zones on two watersheds in coastal British Columbia and estimate total terrestrial fly production from remnant carcasses. Large-bodied chum salmon (Oncorhynchus keta) were transferred into the forest at a greater rate than were pink salmon (Oncorhynchus gorbuscha) (chum salmon mass = 6089–11 031 kg, 16%–48% of salmon run; pink salmon mass = 2266–2808 kg, 4%–6% of salmon run). Blow flies (genus Calliphora) and other Diptera dominated colonization (>90% of salmon carcasses). Between the two watersheds, 196 and 265 g of Calliphora larvae per metre of spawning length (4 and 7 million larvae for whole watersheds) were generated from salmon carcass transfer. Stable isotope analysis of δ15N and δ13C of spring-emerging adult Calliphora revealed that >80% of individuals had salmon-based signatures. Flies are a dominant consumer and vector of salmon nutrients in terrestrial habitats and supplement the diet of at least 16 vertebrate and 22 invertebrate species. Anticipated further declines of salmon in the North Pacific can be expected to further erode the complex associations coupling marine and terrestrial ecosystems.


Genome ◽  
1988 ◽  
Vol 30 (1) ◽  
pp. 89-96 ◽  
Author(s):  
Terry D. Beacham

A factorial mating design was employed in which five males were mated to each of five females in each of two stocks for both pink and chum salmon. The resulting embryos and alevins were incubated at constant water temperatures of 4, 8, and 16 °C for pink salmon and 3, 8, and 15 °C for chum salmon. Variation among families in alevin and fry survival rates, hatching, button-up time, length, and weight was the least at 8 °C. Heritability of traits directly correlated with fitness, such as survival rates and button-up time, was low at all temperatures (h2 ≤ 0.25). Maternal effects could account for a substantial portion of the variation in alevin and fry size characters. Nonadditive genetic variance accounted for more of the variation in fry size characters than in those of alevins. Negative genetic correlations were observed between embryo survival and subsequent alevin size and between hatching time and subsequent alevin and fry size. Genotype–temperature interactions could underlie a substantial amount of phenotypic variation in the developmental characters examined for both species.Key words: development, genetic variation, quantitative genetics, salmon.


1993 ◽  
Vol 71 (6) ◽  
pp. 1270-1274 ◽  
Author(s):  
Terry D. Beacham

Pink (Oncorhynchus gorbuscha) and chum salmon (Oncorhynchus keta) fry have the potential for significant interactions in estuarine and nearshore waters of the Fraser River. Potential competitive effects were investigated by rearing both species for 60 d from fry emergence in monoculture and five duoculture environments (0, 10, 25, 50, 75, 90, and 100% pink salmon, and 100, 90, 75, 50, 25, 10, and 0% chum salmon, respectively), with the total number of fish in each environment constant. As the relative abundance of chum salmon increased, the mean weight of both pink and chum salmon declined, and reduced phenotypic variation in weight was observed. No marked trends in survival were observed in either species, but there was some indication that pink salmon survival was higher at intermediate relative densities of pink and chum salmon. Pink salmon biomass increased from 0.8 to 1.8%/d depending on the environment, and chum salmon biomass increased from 3.2 to 3.8%/d.


2014 ◽  
Vol 71 (4) ◽  
pp. 521-532 ◽  
Author(s):  
Noel R. Swain ◽  
Morgan D. Hocking ◽  
Jennifer N. Harding ◽  
John D. Reynolds

Pacific salmon (Oncorhynchus spp.) can subsidize freshwater food webs with marine-derived nutrients from their eggs, juveniles, and carcasses. However, trophic interactions between spawning salmon and freshwater fish across natural gradients in salmon subsidies remain unclear. We tested how salmon affected the diets and condition of two dominant freshwater consumers — prickly and coastrange sculpins (Cottus asper and Cottus aleuticus, respectively) — across a wide gradient of pink salmon (Oncorhynchus gorbuscha) and chum salmon (Oncorhynchus keta) biomass from 33 streams in the Great Bear Rainforest of British Columbia, Canada. Sculpin diets shifted from invertebrates and juvenile salmonids to salmon eggs when salmon arrived in autumn, with salmon-derived nutrient contributions to diets and sculpin condition increasing with increasing biomass of spawning salmon among streams. Season, habitat, and individual sculpin body size and species also mediated the effects of salmon on sculpin diet as inferred from their carbon and nitrogen stable isotope signatures. This study shows the timing and pathways by which spawning salmon influence the diets and condition of freshwater consumers, and some of the individual and environmental factors that can regulate uptake of salmon nutrients in streams, thus informing ecosystem-based management.


1987 ◽  
Vol 65 (7) ◽  
pp. 1823-1826 ◽  
Author(s):  
T. D. Beacham ◽  
R. E. Withler

We compared developmental stability as measured by fluctuating asymmetry within individual adults for gill raker and branchiostegal ray number and pectoral and pelvic fin length for three populations of chum salmon (Oncorhynchus keta) and one of pink salmon (Oncorhynchus gorbuscha). There was no association between individual heterozygosity calculated at 10 electrophoretic loci for chum salmon and 13 loci for pink salmon and magnitude of fluctuating asymmetry for the four morphological characters examined. More heterozygous individuals were not less asymmetrical, and thus our results provide no evidence to suggest that increased heterozygosity results in an increased canalization of morphology during development and growth.


2017 ◽  
Vol 74 (7) ◽  
pp. 1077-1087 ◽  
Author(s):  
Allan J. Debertin ◽  
James R. Irvine ◽  
Carrie A. Holt ◽  
Gladys Oka ◽  
Marc Trudel

Thirty-nine years of scale growth measurements from Big Qualicum River chum salmon (Oncorhynchus keta) in southern British Columbia demonstrated that competition and climate variation affect marine growth and age-at-maturity. A longitudinal study design that accounted for correlation among individuals revealed growth at all ages was reduced when the biomass of North American chum, sockeye (Oncorhynchus nerka), and pink salmon (Oncorhynchus gorbuscha) was high. When North Pacific Gyre Oscillation (NPGO) was positive, indicating increased primary productivity, predicted growth increased. Climate variation influenced competition effects. For instance, density-dependent competition effects increased when NPGO became more positive and Pacific Decadal Oscillation became more negative (indicating cool conditions), causing the greatest range in predicted scale size. Chum salmon are likely to exhibit continued reduction in growth at age due to increased ocean temperatures driven by climate change and high aggregate salmon biomass that includes hatchery releases. If evidence of biomass and climate effects presented here are common among Pacific salmon populations, reduction of hatchery releases should be considered.


Sign in / Sign up

Export Citation Format

Share Document