scholarly journals Copper Strip Surface Defect Detection Model Based on Deep Convolutional Neural Network

2021 ◽  
Vol 11 (19) ◽  
pp. 8945
Author(s):  
Yanghuan Xu ◽  
Dongcheng Wang ◽  
Bowei Duan ◽  
Huaxin Yu ◽  
Hongmin Liu

Surface defect automatic detection has great significance for copper strip production. The traditional machine vision for surface defect automatic detection of copper strip needs artificial feature design, which has a long cycle, and poor ability of versatility and robustness. However, deep learning can effectively solve these problems. Therefore, based on the deep convolution neural network and the transfer learning strategy, an intelligent recognition model of surface defects of copper strip is established in this paper. Firstly, the defects were classified in accordance with the mechanism and morphology, and the surface defect dataset of copper strip was established by comprehensively adopting image acquisition and image augmentation. Then, a two-class discrimination model was established to achieve the accurate discrimination of perfect and defect images. On this basis, four CNN models were adopted for the recognition of defect images. Among these models, the EfficientNet model through transfer learning strategy had the best comprehensive performance with a recognition accuracy rate of 93.05%. Finally, the interpretability and deficiency of the model were analysed by the class activation map and confusion matrix, which point toward the direction of further optimization for future research.

2012 ◽  
Vol 538-541 ◽  
pp. 427-430 ◽  
Author(s):  
An Na Wang ◽  
Chao Hu ◽  
Chang Liang Xue ◽  
Hong Rui Zhang

The paper presents a new method which uses Binary Tree SVM in the automatic classification of surface defects for hot strip. Two types of Binary Tree SVMs are applied in defect classification. Compared with BP neural network and one-against-one SVM, the algorithm adopted in the paper greatly improved the accuracy of classification and decreased the classification time.


BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 3041-3052
Author(s):  
Kai Hu ◽  
Baojin Wang ◽  
Yi Shen ◽  
Jieru Guan ◽  
Yi Cai

As the main production unit of plywood, the surface defects of veneer seriously affect the quality and grade of plywood. Therefore, a new method for identifying wood defects based on progressive growing generative adversarial network (PGGAN) and the MASK R-CNN model is presented. Poplar veneer was mainly studied in this paper, and its dead knots, live knots, and insect holes were identified and classified. The PGGAN model was used to expand the dataset of wood defect images. A key ideal employed the transfer learning in the base of MASK R-CNN with a classifier layer. Lastly, the trained model was used to identify and classify the veneer defects compared with the back- propagation (BP) neural network, self-organizing map (SOM) neural network, and convolutional neural network (CNN). Experimental results showed that under the same conditions, the algorithm proposed in this paper based on PGGAN and MASK R-CNN and the model obtained through the transfer learning strategy accurately identified the defects of live knots, dead knots, and insect holes. The accuracy of identification was 99.05%, 97.05%, and 99.10%, respectively.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Hao Wu ◽  
Quanquan Lv

In the production process of steel strips, the detection of surface defects is very important. However, traditional methods of defect detection bring problems of low detection accuracy and dependence on subjective judgment. In this study, the surface defects of steel strips are detected by a classic convolutional neural network method that is improved by the use of a transfer learning model. This model has the advantages of shorter training time, faster convergence, and more accurate weight parameters. The transfer learning model obtained through experiments secures better results in defect detection than the classic convolutional neural network method, as its accuracy of training and testing has reached about 98%. Finally, a model based on a full convolutional neural network (FCN) is proposed for segmenting the defective areas of steel strips.


Author(s):  
Niha Kamal Basha ◽  
Aisha Banu Wahab

: Absence seizure is a type of brain disorder in which subject get into sudden lapses in attention. Which means sudden change in brain stimulation. Most of this type of disorder is widely found in children’s (5-18 years). These Electroencephalogram (EEG) signals are captured with long term monitoring system and are analyzed individually. In this paper, a Convolutional Neural Network to extract single channel EEG seizure features like Power, log sum of wavelet transform, cross correlation, and mean phase variance of each frame in a windows are extracted after pre-processing and classify them into normal or absence seizure class, is proposed as an empowerment of monitoring system by automatic detection of absence seizure. The training data is collected from the normal and absence seizure subjects in the form of Electroencephalogram. The objective is to perform automatic detection of absence seizure using single channel electroencephalogram signal as input. Here the data is used to train the proposed Convolutional Neural Network to extract and classify absence seizure. The Convolutional Neural Network consist of three layers 1] convolutional layer – which extract the features in the form of vector 2] Pooling layer – the dimensionality of output from convolutional layer is reduced and 3] Fully connected layer–the activation function called soft-max is used to find the probability distribution of output class. This paper goes through the automatic detection of absence seizure in detail and provide the comparative analysis of classification between Support Vector Machine and Convolutional Neural Network. The proposed approach outperforms the performance of Support Vector Machine by 80% in automatic detection of absence seizure and validated using confusion matrix.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 706
Author(s):  
Xinglong Feng ◽  
Xianwen Gao ◽  
Ling Luo

It is important to accurately classify the defects in hot rolled steel strip since the detection of defects in hot rolled steel strip is closely related to the quality of the final product. The lack of actual hot-rolled strip defect data sets currently limits further research on the classification of hot-rolled strip defects to some extent. In real production, the convolutional neural network (CNN)-based algorithm has some difficulties, for example, the algorithm is not particularly accurate in classifying some uncommon defects. Therefore, further research is needed on how to apply deep learning to the actual detection of defects on the surface of hot rolled steel strip. In this paper, we proposed a hot rolled steel strip defect dataset called Xsteel surface defect dataset (X-SDD) which contains seven typical types of hot rolled strip defects with a total of 1360 defect images. Compared with the six defect types of the commonly used NEU surface defect database (NEU-CLS), our proposed X-SDD contains more types. Then, we adopt the newly proposed RepVGG algorithm and combine it with the spatial attention (SA) mechanism to verify the effect on the X-SDD. Finally, we apply multiple algorithms to test on our proposed X-SDD to provide the corresponding benchmarks. The test results show that our algorithm achieves an accuracy of 95.10% on the testset, which exceeds other comparable algorithms by a large margin. Meanwhile, our algorithm achieves the best results in Macro-Precision, Macro-Recall and Macro-F1-score metrics.


2021 ◽  
Vol 2082 (1) ◽  
pp. 012016
Author(s):  
Xinglong Feng ◽  
Xianwen Gao ◽  
Ling Luo

Abstract A new Vision Transformer(ViT) model is proposed for the classification of surface defects in hot rolled strip, optimizing the poor learning ability of the original Vision Transformer model on smaller datasets. Firstly, each module of ViT and its characteristics are analyzed; Secondly, inspired by the deep learning model VGGNet, the multilayer fully connected layer in VGGNet is introduced into the ViT model to increase its learning capability; Finally, by performing on the X-SDD hot-rolled steel strip surface defect dataset. The effect of the improved algorithm is verified by comparison experiments on the X-SDD hot-rolled strip steel surface defect dataset. The test results show that the improved algorithm achieves better results than the original model in terms of accuracy, recall, F1 score, etc. Among them, the accuracy of the improved algorithm on the test set is 5.64% higher than ViT-Base and 2.64% higher than ViT-Huge; the accuracy is 4.68% and 1.36% higher than both of them, respectively.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Hou Jingzhong ◽  
Xia Kewen ◽  
Yang Fan ◽  
Zu Baokai

Strip steel surface defect recognition is a pattern recognition problem with wide applications. Previous works on strip surface defect recognition mainly focus on feature selection and dimension reduction. There are also approaches on real-time systems that mainly exploit the autocorrection within some given picture. However, the instances cannot be used in practical applications because of a bad recognition rate and low efficiency. In this paper, we study the intelligent algorithm of strip steel surface defect recognition, where the goal is to improve the accuracy and save running time. This problem is very important in various applications, especially the process testing of steel manufacturing. We propose an approach called the second-order cone programming (SOCP) optimized multiple kernel relevance vector machine (MKRVM), which can recognize strip surface defects much better than other methods. The method includes the model parameter estimation, training, and optimization of the model based on SOCP and the classification test. We compare our approach with existing methods on strip surface defect recognition. The results demonstrate that our proposed approach can improve the recognition accuracy and reduce the time costs of the strip surface defect.


2019 ◽  
Vol 9 (22) ◽  
pp. 4898 ◽  
Author(s):  
Augustas Urbonas ◽  
Vidas Raudonis ◽  
Rytis Maskeliūnas ◽  
Robertas Damaševičius

In the lumber and wood processing industry, most visual quality inspections are still done by trained human operators. Visual inspection is a tedious and repetitive task that involves a high likelihood of human error. Currently, new automated solutions with high-resolution cameras and visual inspection algorithms are being tested, but they are not always fast and accurate enough for real-time industrial applications. This paper proposes an automatic visual inspection system for the location and classification of defects on the wood surface. We adopted a faster region-based convolutional neural network (faster R-CNN) for the identification of defects on wood veneer surfaces. Faster R-CNN has been successfully used in medical image processing and object tracking before, but it has not yet been applied for wood panel surface quality assurance. To improve the results, we used pre-trained AlexNet, VGG16, BNInception, and ResNet152 neural network models for transfer learning. The results of the experiments using a synthetically augmented dataset are presented. The best average accuracy of 80.6% was obtained using the pretrained ResNet152 neural network model. By combining all the defect classes, a 96.1% accuracy of finding wood panel surface defects was achieved.


2013 ◽  
Vol 462-463 ◽  
pp. 302-307
Author(s):  
Xiao Dan Sun ◽  
Xin Nan Fan ◽  
Ming Qiang Ling ◽  
Hong Hai Zhuang ◽  
Zhuo Zhang ◽  
...  

In view of the problem that in traditional copper strip surface defect inspection process, the low resolution of the collected images will greatly decrease the accuracy of the detect defects, through the study of biological bionic imaging technology, combined with insect bionic compound eye imaging technology, this paper proposes a visual simulation insects bionic mechanism of the copper strip surface defect image super-resolution reconstruction technique. Through the study of biological bionic imaging technology, and take the advantage of insect compound eye visual imaging mechanism, this paper uses multiple linear array CCD image sensors to collect images aimed at getting defect images in all perspectives. The actual input images are restored by the method of super-resolution reconstruction using the sample library to improve the resolution of the image. Through the large amount of experiments of different copper strip surface defect images, and then compare the results, it can be seen that taking this papers method to dispose the defect images, will improve the images PSNR value, and has greatly improved the images quality, which will do good to improve the accuracy of the copper strip surface defect detection.


Sign in / Sign up

Export Citation Format

Share Document