scholarly journals A Perspective on the Solar Modulation of Cosmic Anti-Matter

Physics ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 1190-1225
Author(s):  
Marius S. Potgieter ◽  
O. P. M. Aslam ◽  
Driaan Bisschoff ◽  
Donald Ngobeni

Global modulation studies with comprehensive numerical models contribute meaningfully to the refinement of very local interstellar spectra (VLISs) for cosmic rays. Modulation of positrons and anti-protons are investigated to establish how the ratio of their intensity, and with respect to electrons and protons, are changing with solar activity. This includes the polarity reversal of the solar magnetic field which creates a 22-year modulation cycle. Modeling illustrates how they are modulated over time and the particle drift they experience which is significant at lower kinetic energy. The VLIS for anti-protons has a peculiar spectral shape in contrast to protons so that the total modulation of anti-protons is awkwardly different to that for protons. We find that the proton-to-anti-proton ratio between 1–2 GeV may change by a factor of 1.5 over a solar cycle and that the intensity for anti-protons may decrease by a factor of ~2 at 100 MeV during this cycle. A composition is presented of VLIS for protons, deuteron, helium isotopes, electrons, and particularly for positrons and anti-protons. Gaining knowledge of their respective 11 and 22 year modulation is useful to interpret observations of low-energy anti-nuclei at the Earth as tests of dark matter annihilation.

2013 ◽  
Vol 4 (2) ◽  
pp. 151-156 ◽  
Author(s):  
G. Kozma ◽  
E. Molnár ◽  
K. Czimre ◽  
J. Pénzes

Abstract In our days, energy issues belong to the most important problems facing the Earth and the solution may be expected partly from decreasing the amount of the energy used and partly from the increased utilisation of renewable energy resources. A substantial part of energy consumption is related to buildings and includes, inter alia, the use for cooling/heating, lighting and cooking purposes. In the view of the above, special attention has been paid to minimising the energy consumption of buildings since the late 1980s. Within the framework of that, the passive house was created, a building in which the thermal comfort can be achieved solely by postheating or postcooling of the fresh air mass without a need for recirculated air. The aim of the paper is to study the changes in the construction of passive houses over time. In addition, the differences between the geographical locations and the observable peculiarities with regard to the individual building types are also presented.


2011 ◽  
pp. 39-51 ◽  
Author(s):  
Anna Zanzottera ◽  
Giorgio Mingotti ◽  
Roberto Castelli ◽  
Michael Dellnitz
Keyword(s):  

Author(s):  
Anne Ton ◽  
Vincent Vuik ◽  
Rinse Wilmink ◽  
Stefan Aarninkhof

Sandy foreshores play an important role in flood risk reduction in areas near seacoasts, estuaries and lakes. The morphodynamics of sandy foreshores or beaches in lakes, known as low-energy, non-tidal environments, have not been studied as extensively as open coasts. The goal of this research is to understand the relation between hydrodynamics and morphology on sandy lake beaches. At our four study sites, a sub aqueous horizontal platform evolved of which the elevation stabilizes over time. We conclude that the eventual elevation of these platforms is located at the depth of closure. Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/7TbmH3hXnDE


1978 ◽  
Vol 31 (5) ◽  
pp. 451 ◽  
Author(s):  
DP Bhattacharyya

A study is made of the influence of long-term solar modulation on the low energy sea level muon spectrum near the geomagnetic equator. Recent experimental data are compared with theoretical results calculated from the phenomenological model of Allkofer and Dau. It is suggested that the observed enhancement in the muon intensity is mainly due to a shift in the solar potential.


Radiocarbon ◽  
1980 ◽  
Vol 22 (2) ◽  
pp. 133-158 ◽  
Author(s):  
Giuliana Castagnoli ◽  
Devendra Lal

This paper is concerned with the expected deviations in the production rate of natural 14C on the earth due to changes in solar activity. We review the published estimates of the global production rates of 14C due to galactic and solar cosmic ray particles, and present new estimates of the expected secular variations in 14C production, taking into account the latest information available on galactic cosmic ray modulation and long-term variations in solar activity.


2014 ◽  
Vol 10 (4) ◽  
pp. 20140172 ◽  
Author(s):  
Rebecca N. Cliffe ◽  
Judy A. Avey-Arroyo ◽  
Francisco J. Arroyo ◽  
Mark D. Holton ◽  
Rory P. Wilson

Sloths are mammals renowned for spending a large proportion of time hanging inverted. In this position, the weight of the abdominal contents is expected to act on the lungs and increase the energetic costs of inspiration. Here, we show that three-fingered sloths Bradypus variegatus possess unique fibrinous adhesions that anchor the abdominal organs, particularly the liver and glandular stomach, to the lower ribs. The key locations of these adhesions, close to the diaphragm, prevent the weight of the abdominal contents from acting on the lungs when the sloth is inverted. Using ventilation rate and body orientation data collected from captive and wild sloths, we use an energetics-based model to estimate that these small adhesions could reduce the energy expenditure of a sloth at any time it is fully inverted by almost 13%. Given body angle preferences for individual sloths in our study over time, this equates to mean energy saving of 0.8–1.5% across individuals (with individual values ranging between 0.01 and 8.6%) per day. Given the sloth's reduced metabolic rate compared with other mammals and extremely low energy diet, these seemingly innocuous adhesions are likely to be important in the animal's energy budget and survival.


2020 ◽  
Author(s):  
Bernd Heber ◽  
Robert Wimmer-Schweingruber ◽  
Marlon Köberle ◽  
Patrick Kühl ◽  
Stephan Böttcher

<p>The recent AMS 02 measurements show that the very local interstellar spectra (VLIS) for galactic cosmic rays cannot be directly measured at the Earth below rigidities of 40-60 GV because of solar modulation. With Voyager 1and Voyager II crossing the heliopause in 2012 and 2018, in situ experimental LIS data below 100 MeV/nuc constrain computed galactic CR spectra. However, the energy spectra in between can so far only be derived by models. This gap could be narrowed by flying an instrument like the The COsmic and Solar Particle INvestigation Kiel Electron Telescope (COSPIN/KET) that measured protons and alpha-particles in the energy range from about 4 to above 2000 MeV/n and electrons in the range up to 10 GeV in distinguished energy channels. Such a telescope would consist of two parts: 1) an entrance telescope of two semiconductors comprising a silica-aerogel Cherenkov detector with a refractive index of 1.066, selecting particles with speeds v/c = b > 0.938, and 2) a calorimeter, a lead-fluoride Cherenkov detector followed by a scintillation detector measuring escaping particles.</p>


1998 ◽  
Vol 13 (27) ◽  
pp. 2173-2178 ◽  
Author(s):  
S. BHATTACHARYYA ◽  
DHIMAN ROY

A new surge of interest is likely to spring up in the near future against the background of speculations on the enhancement of the low-energy antiproton flux from some of the predicted primary antiproton sources owing to the probable occurrence of the rapid fluctuation of the solar modulation in 1999. A previous calculation of antiproton flux based on a specific model of particle production and of a galactic propagation is updated here. The results estimated for moderate solar modulation are in better agreement with both low-energy and high-energy data for [Formula: see text] values by induction of the roles of primary sources of antiprotons and also of some other factors mentioned in this letter.


Science ◽  
1994 ◽  
Vol 263 (5147) ◽  
pp. 641-646 ◽  
Author(s):  
N. Oreskes ◽  
K. Shrader-Frechette ◽  
K. Belitz

Sign in / Sign up

Export Citation Format

Share Document