scholarly journals Starspot modelling of the TESS light curve of CVSO 30

2021 ◽  
Vol 647 ◽  
pp. L1
Author(s):  
C. Koen

Aims. I aim to investigate whether the photometric variability in the candidate host star CVSO 30 can be explained by starspots. Methods. The Transiting Exoplanet Survey Satellite (TESS) light curve of CVSO 30 is separated into two independent non-sinusoidal periodic components. A starspot modelling technique is applied to each of these components. Results. Combined, the two model light curves reproduce the TESS observations to a high accuracy, obviating the need to invoke planetary transits to describe part of the variability.

2021 ◽  
Author(s):  
Estela Fernández-Valenzuela ◽  
Jose Luis Ortiz ◽  
Bryan Holler ◽  
Monica Vara-Lubiano ◽  
Nicolas Morales ◽  
...  

<p>Two stellar occultations by the largest satellite of the dwarf planet Haumea, Hi'iaka, were predicted to happen on April, 6th and 16th, 2021. Additional high accuracy astrometric analysis was carried out in order to refine the prediction for April 6th, using several telescopes in the 1.2-m to 2-m range, with the final shadow path crossing North Africa. We successfully detected the first event from TRAPPIST-North telescope at Oukaïmeden Observatory (Morocco). Although it was recorded from only one site, this first detection allowed us to improve the prediction for the second that crossed North America from East to West. We had a good success recording six positive detections and several negative detections that constrain the shape and size of the body. The light curves obtained from the different observatories provide the time at which the star disappears and reappears, which are translated into chords (the projected lines on the sky-plane as observed from each location). Additionally, we carried out a campaign to study Hi'iaka's rotational light-curve, studying the residuals of Haumea's rotational light-curve to a four-order Fourier fit. We obtained the rotational phases at the times of the occultations, which is critical for the analysis of the occultations, given that Hi’iaka is clearly non-spherical. Our preliminary results show that Hi'iaka indeed has a triaxial shape with a larger effective diameter than what has been published so far. The preliminary results and their implications will be discussed in this talk. </p>


2018 ◽  
Vol 617 ◽  
pp. A121 ◽  
Author(s):  
J. Krtička ◽  
A. Feldmeier

A small fraction of the radiative flux emitted by hot stars is absorbed by their winds and redistributed towards longer wavelengths. This effect, which leads also to the heating of the stellar photosphere, is termed wind blanketing. For stars with variable winds, the effect of wind blanketing may lead to the photometric variability. We have studied the consequences of line driven wind instability and wind blanketing for the light variability of O stars. We combined the results of wind hydrodynamic simulations and of global wind models to predict the light variability of hot stars due to the wind blanketing and instability. The wind instability causes stochastic light variability with amplitude of the order of tens of millimagnitudes and a typical timescale of the order of hours for spatially coherent wind structure. The amplitude is of the order of millimagnitudes when assuming that the wind consists of large number of independent concentric cones. The variability with such amplitude is observable using present space borne photometers. We show that the simulated light curve is similar to the light curves of O stars obtained using BRITE and CoRoT satellites.


2012 ◽  
Vol 8 (S293) ◽  
pp. 410-412
Author(s):  
Rodrigo Carlos Boufleur ◽  
Marcelo Emilio ◽  
Eduardo Janot Pacheco ◽  
Jorge Ramiro de La Reza ◽  
José Carlos da Rocha

AbstractNon gaussian sources of erros need to be taken into consideration when searching for planetary transits. Such phenomena are mostly caused by the impact of high energetic particles on the detector (Pinheiro da Silva et al. 2008). The detection efficiency of transits, therefor, depend significantly on the data quality and the algorithms utilized to deal with these errors sources. In this work we show that a modified detrend algorithm CDA (CoRoT Detrend Algorithm; Mislis et al. 2010) using a robust statistics and an empirical fit, instead of a polynomial one, can eliminate more efficiently gaps in the data and other long-term trends from the light-curve. Using this algorithm enables us to obtain a reconstructed light-curve with better signal-to-noise ratio that allows to improve the detection of exoplanet transits, although long term signals are destroyed. The results show that these modifications lead to an improved BLS (Box-fitting Least Squares; Kovács, Zucker & Mazeh 2002) algorithm spectrum. At the end we have compared our planetary search results with CoRoT (Convection, Rotation and planetary Transits) satellite chromatic light-curves available in the literature.


2018 ◽  
Vol 617 ◽  
pp. A49 ◽  
Author(s):  
Kai Rodenbeck ◽  
René Heller ◽  
Michael Hippke ◽  
Laurent Gizon

Context. Transit photometry of the Jupiter-sized exoplanet candidate Kepler-1625 b has recently been interpreted as showing hints of a moon. This exomoon, the first of its kind, would be as large as Neptune and unlike any moon we know from the solar system. Aims. We aim to clarify whether the exomoon-like signal is indeed caused by a large object in orbit around Kepler-1625 b, or whether it is caused by stellar or instrumental noise or by the data detrending procedure. Methods. To prepare the transit data for model fitting, we explore several detrending procedures using second-, third-, and fourth-order polynomials and an implementation of the Cosine Filtering with Autocorrelation Minimization (CoFiAM). We then supply a light curve simulator with the co-planar orbital dynamics of the system and fit the resulting planet–moon transit light curves to the Kepler data. We employ the Bayesian information criterion (BIC) to assess whether a single planet or a planet–moon system is a more likely interpretation of the light curve variations. We carry out a blind hare-and-hounds exercise using many noise realizations by injecting simulated transits into different out-of-transit parts of the original Kepler-1625 light curve: (1) 100 sequences with three synthetic transits of a Kepler-1625 b-like Jupiter-size planet and (2) 100 sequences with three synthetic transits of a Kepler-1625 b-like planet with a Neptune-sized moon. Results. The statistical significance and characteristics of the exomoon-like signal strongly depend on the detrending method (polynomials versus cosines), the data chosen for detrending, and the treatment of gaps in the light curve. Our injection-retrieval experiment shows evidence of moons in about 10% of those light curves that do not contain an injected moon. Strikingly, many of these false-positive moons resemble the exomoon candidate, that is, a Neptune-sized moon at about 20 Jupiter radii from the planet. We recover between about one third and one half of the injected moons, depending on the detrending method, with radii and orbital distances broadly corresponding to the injected values. Conclusions. A ΔBIC of − 4.9 for the CoFiAM-based detrending is indicative of an exomoon in the three transits of Kepler-1625 b. This solution, however, is only one out of many and we find very different solutions depending on the details of the detrending method. We find it concerning that the detrending is so clearly key to the exomoon interpretation of the available data of Kepler-1625 b. Further high-accuracy transit observations may overcome the effects of red noise but the required amount of additional data might be large.


1979 ◽  
Vol 46 ◽  
pp. 385
Author(s):  
M.B.K. Sarma ◽  
K.D. Abhankar

AbstractThe Algol-type eclipsing binary WX Eridani was observed on 21 nights on the 48-inch telescope of the Japal-Rangapur Observatory during 1973-75 in B and V colours. An improved period of P = 0.82327038 days was obtained from the analysis of the times of five primary minima. An absorption feature between phase angles 50-80, 100-130, 230-260 and 280-310 was present in the light curves. The analysis of the light curves indicated the eclipses to be grazing with primary to be transit and secondary, an occultation. Elements derived from the solution of the light curve using Russel-Merrill method are given. From comparison of the fractional radii with Roche lobes, it is concluded that none of the components have filled their respective lobes but the primary star seems to be evolving. The spectral type of the primary component was estimated to be F3 and is found to be pulsating with two periods equal to one-fifth and one-sixth of the orbital period.


2012 ◽  
Vol 423 (2) ◽  
pp. 993-1005 ◽  
Author(s):  
J. Jurcsik ◽  
Á. Sódor ◽  
G. Hajdu ◽  
B. Szeidl ◽  
Á. Dózsa ◽  
...  

Abstract The analysis of recent, extended multicolour CCD and archive photoelectric, photographic and visual observations has revealed several important properties of RZ Lyr, an RRab-type variable exhibiting large-amplitude Blazhko modulation. On the time base of ∼110 yr, a strict anticorrelation between the pulsation- and modulation-period changes is established. The light curve of RZ Lyr shows a remarkable bump on the descending branch in the small-amplitude phase of the modulation, similarly to the light curves of bump Cepheids. We speculate that the stellar structure temporally suits a 4:1 resonance between the periods of the fundamental and one of the higher order radial modes in this modulation phase. The light-curve variation of RZ Lyr can be correctly fitted with a two-modulation-component solution; the 121-d period of the main modulation is nearly but not exactly four times longer than the period of the secondary modulation component. Using the inverse photometric method, the variations in the pulsation-averaged values of the physical parameters in different phases of both modulation components are determined.


1998 ◽  
Vol 11 (1) ◽  
pp. 346-346
Author(s):  
E. Zsldos

The light curves of luminous stars often show spectacular secular changes which can be connected to stellar evolution. Such events are, e.g. the outbursts of P Cygni in the 17th century and 77 Carinae in the last century. Both stars belong to the Luminous Blue Variables, but these changes are not restricted to blue stars. The light curve of HR 8752 (V509 Cassiopeiae) shows a certain similarity to that of the former two stars. When it was first catalogued in the middle of the 19th century, it had been a 6m star. During 100 years the star showed a secular brightening of lm. A similar yellow hypergiant, p Cassiopeiae produced at least two outbursts this century, though both have smaller amplitudes than it is in the case of the LBVs. Moreover, these yellow variables also have an apparently secular colour change: the B − V colour of HR 8752 is decreasing while that of ρ Cassiopeiae is increasing. In both cases evolutionary changes are possible but one cannot exclude other causes. Besides these well studied stars there are several other yellow hypergiants with promising light curves. One of the most interesting cases seems to be R Puppis, which was discovered to be variable in the last century, but then did not show any appreciable change in the following 70-80 years. In the late 1970s, however, it began to vary once more.


2021 ◽  
Vol 502 (3) ◽  
pp. 4112-4124
Author(s):  
Umut Burgaz ◽  
Keiichi Maeda ◽  
Belinda Kalomeni ◽  
Miho Kawabata ◽  
Masayuki Yamanaka ◽  
...  

ABSTRACT Photometric and spectroscopic observations of Type Ia supernova (SN) 2017fgc, which cover the period from −12 to + 137 d since the B-band maximum are presented. SN 2017fgc is a photometrically normal SN Ia with the luminosity decline rate, Δm15(B)true  = 1.10 ± 0.10 mag. Spectroscopically, it belongs to the high-velocity (HV) SNe Ia group, with the Si ii λ6355 velocity near the B-band maximum estimated to be 15 200 ± 480 km s−1. At the epochs around the near-infrared secondary peak, the R and I bands show an excess of ∼0.2-mag level compared to the light curves of the normal velocity (NV) SNe Ia. Further inspection of the samples of HV and NV SNe Ia indicates that the excess is a generic feature among HV SNe Ia, different from NV SNe Ia. There is also a hint that the excess is seen in the V band, both in SN 2017fgc and other HV SNe Ia, which behaves like a less prominent shoulder in the light curve. The excess is not obvious in the B band (and unknown in the U band), and the colour is consistent with the fiducial SN colour. This might indicate that the excess is attributed to the bolometric luminosity, not in the colour. This excess is less likely caused by external effects, like an echo or change in reddening but could be due to an ionization effect, which reflects an intrinsic, either distinct or continuous, difference in the ejecta properties between HV and NV SNe Ia.


2020 ◽  
Vol 29 (1) ◽  
pp. 72-80 ◽  
Author(s):  
Fatemeh Davoudi ◽  
Atila Poro ◽  
Fahri Alicavus ◽  
Afshin Halavati ◽  
Saeed Doostmohammadi ◽  
...  

AbstractNew observations of the eclipsing binary system V1848 Ori were carried out using the V filter resulting in a determination of new times of minima and new ephemeris were obtained. We presented the first complete analysis of the system’s orbital period behavior and analysis of O-C diagram done by the GA and MCMC approaches in OCFit code. The O-C diagram demonstrates a sinusoidal trend in the data; this trend suggests a cyclic change caused by the LITE effect with a period of 10.57 years and an amplitude of 7.182 minutes. It appears that there is a third body with mass function of f (m3) = 0.0058 M⊙ in this binary system. The light curves were analyzed using the Wilson-Devinney code to determine some geometrical and physical parameters of the system. These results show that V1848 Ori is a contact W UMa binary system with the mass ratio of q = 0.76 and a weak fillout factor of 5.8%. The O’Connell effect was not seen in the light curve and there is no need to add spot.


1989 ◽  
Vol 104 (1) ◽  
pp. 289-298
Author(s):  
Giovanni Peres

AbstractThis paper discusses the hydrodynamic modeling of flaring plasma confined in magnetic loops and its objectives within the broader scope of flare physics. In particular, the Palermo-Harvard model is discussed along with its applications to the detailed fitting of X-ray light curves of solar flares and to the simulation of high-resolution Caxix spectra in the impulsive phase. These two approaches provide complementary constraints on the relevant features of solar flares. The extension to the stellar case, with the fitting of the light curve of an X-ray flare which occurred on Proxima Centauri, demonstrates the feasibility of using this kind of model for stars too. Although the stellar observations do not provide the wealth of details available for the Sun, and, therefore, constrain the model more loosely, there are strong motivations to pursue this line of research: the wider range of physical parameters in stellar flares and the possibility of studying further the solar-stellar connection.


Sign in / Sign up

Export Citation Format

Share Document