scholarly journals Let the Great World Spin: Revealing the Stormy, Turbulent Nature of Young Giant Exoplanet Analogs with the Spitzer Space Telescope

2022 ◽  
Vol 924 (2) ◽  
pp. 68
Author(s):  
Johanna M. Vos ◽  
Jacqueline K. Faherty ◽  
Jonathan Gagné ◽  
Mark Marley ◽  
Stanimir Metchev ◽  
...  

Abstract We present a survey for photometric variability in young, low-mass brown dwarfs with the Spitzer Space Telescope. The 23 objects in our sample show robust signatures of youth and share properties with directly imaged exoplanets. We present three new young objects: 2MASS J03492367+0635078, 2MASS J09512690−8023553, and 2MASS J07180871−6415310. We detect variability in 13 young objects, and find that young brown dwarfs are highly likely to display variability across the L2–T4 spectral type range. In contrast, the field dwarf variability occurrence rate drops for spectral types >L9. We examine the variability amplitudes of young objects and find an enhancement in maximum amplitudes compared to field dwarfs. We speculate that the observed range of amplitudes within a spectral type may be influenced by secondary effects such as viewing inclination and/or rotation period. We combine our new rotation periods with the literature to investigate the effects of mass on angular momentum evolution. While high-mass brown dwarfs (>30M Jup) spin up over time, the same trend is not apparent for lower-mass objects (<30M Jup), likely due to the small number of measured periods for old, low-mass objects. The rotation periods of companion brown dwarfs and planetary-mass objects are consistent with those of isolated objects with similar ages and masses, suggesting similar angular momentum histories. Within the AB Doradus group, we find a high-variability occurrence rate and evidence for common angular momentum evolution. The results are encouraging for future variability searches in directly imaged exoplanets with facilities such as the James Webb Space Telescope and 30 m telescopes.

2018 ◽  
Vol 620 ◽  
pp. A132 ◽  
Author(s):  
B. W. Holwerda ◽  
J. S. Bridge ◽  
R. Ryan ◽  
M. A. Kenworthy ◽  
N. Pirzkal ◽  
...  

Aims. We aim to evaluate the near-infrared colors of brown dwarfs as observed with four major infrared imaging space observatories: the Hubble Space Telescope (HST), the James Webb Space Telescope (JWST), the Euclid mission, and the WFIRST telescope. Methods. We used the SPLAT SPEX/ISPEX spectroscopic library to map out the colors of the M-, L-, and T-type dwarfs. We have identified which color–color combination is optimal for identifying broad type and which single color is optimal to then identify the subtype (e.g., T0-9). We evaluated each observatory separately as well as the narrow-field (HST and JWST) and wide-field (Euclid and WFIRST) combinations. Results. The Euclid filters perform equally well as HST wide filters in discriminating between broad types of brown dwarfs. WFIRST performs similarly well, despite a wider selection of filters. However, subtyping with any combination of Euclid and WFIRST observations remains uncertain due to the lack of medium, or narrow-band filters. We argue that a medium band added to the WFIRST filter selection would greatly improve its ability to preselect brown dwarfs its imaging surveys. Conclusions. The HST filters used in high-redshift searches are close to optimal to identify broad stellar type. However, the addition of F127M to the commonly used broad filter sets would allow for unambiguous subtyping. An improvement over HST is one of two broad and medium filter combinations on JWST: pairing F140M with either F150W or F162M discriminates very well between subtypes.


2020 ◽  
Vol 492 (1) ◽  
pp. 1008-1024 ◽  
Author(s):  
Edward Gillen ◽  
Joshua T Briegal ◽  
Simon T Hodgkin ◽  
Daniel Foreman-Mackey ◽  
Floor Van Leeuwen ◽  
...  

ABSTRACT We determine rotation periods for 127 stars in the ∼115-Myr-old Blanco 1 open cluster using ∼200 d of photometric monitoring with the Next Generation Transit Survey. These stars span F5–M3 spectral types (1.2 M⊙ ≳ M ≳ 0.3 M⊙) and increase the number of known rotation periods in Blanco 1 by a factor of four. We determine rotation periods using three methods: Gaussian process (GP) regression, generalized autocorrelation function (G-ACF), and Lomb–Scargle (LS) periodogram, and find that the GP and G-ACF methods are more applicable to evolving spot modulation patterns. Between mid-F and mid-K spectral types, single stars follow a well-defined rotation sequence from ∼2 to 10 d, whereas stars in photometric multiple systems typically rotate faster. This may suggest that the presence of a moderate-to-high mass ratio companion inhibits angular momentum loss mechanisms during the early pre-main sequence, and this signature has not been erased at ∼100 Myr. The majority of mid-F to mid-K stars display evolving modulation patterns, whereas most M stars show stable modulation signals. This morphological change coincides with the shift from a well-defined rotation sequence (mid-F to mid-K stars) to a broad rotation period distribution (late-K and M stars). Finally, we compare our rotation results for Blanco 1 to the similarly aged Pleiades: the single-star populations in both clusters possess consistent rotation period distributions, which suggests that the angular momentum evolution of stars follows a well-defined pathway that is, at least for mid-F to mid-K stars, strongly imprinted by ∼100 Myr.


2019 ◽  
Vol 488 (3) ◽  
pp. 4338-4355 ◽  
Author(s):  
Linhao Ma ◽  
Jim Fuller

Abstract The internal rotational dynamics of massive stars are poorly understood. If angular momentum (AM) transport between the core and the envelope is inefficient, the large core AM upon core-collapse will produce rapidly rotating neutron stars (NSs). However, observations of low-mass stars suggest an efficient AM transport mechanism is at work, which could drastically reduce NS spin rates. Here, we study the effects of the baroclinic instability and the magnetic Tayler instability in differentially rotating radiative zones. Although the baroclinic instability may occur, the Tayler instability is likely to be more effective for AM transport. We implement Tayler torques as prescribed by Fuller, Piro, and Jermyn into models of massive stars, finding they remove the vast majority of the core’s AM as it contracts between the main-sequence and helium-burning phases of evolution. If core AM is conserved during core-collapse, we predict natal NS rotation periods of $P_{\rm NS} \approx 50\!-\!200 \, {\rm ms}$, suggesting these torques help explain the relatively slow rotation rates of most young NSs, and the rarity of rapidly rotating engine-driven supernovae. Stochastic spin-up via waves just before core-collapse, asymmetric explosions, and various binary evolution scenarios may increase the initial rotation rates of many NSs.


2007 ◽  
Vol 3 (S243) ◽  
pp. 241-248
Author(s):  
Jochen Eislöffel ◽  
Alexander Scholz

AbstractThe evolution of angular momentum is a key to our understanding of star formation and stellar evolution. The rotational evolution of solar-mass stars is mostly controlled by magnetic interaction with the circumstellar disc and angular momentum loss through stellar winds. Major differences in the internal structure of very low-mass stars and brown dwarfs – they are believed to be fully convective throughout their lives, and thus should not operate a solar-type dynamo – may lead to major differences in the rotation and activity of these objects. Here, we report on observational studies to understand the rotational evolution of the very low-mass stars and brown dwarfs.


Galaxies ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 12 ◽  
Author(s):  
John Herbert Marr

The relaxed motion of stars and gas in galactic discs is well approximated by a rotational velocity that is a function of radial position only, implying that individual components have lost any information about their prior states. Thermodynamically, such an equilibrium state is a microcanonical ensemble with maximum entropy, characterised by a lognormal probability distribution. Assuming this for the surface density distribution yields rotation curves that closely match observational data across a wide range of disc masses and galaxy types and provides a useful tool for modelling the theoretical density distribution in the disc. A universal disc spin parameter emerges from the model, giving a tight virial mass estimator with strong correlation between angular momentum and disc mass, suggesting a mechanism by which the proto-disc developed by dumping excess mass to the core or excess angular momentum to a satellite galaxy. The baryonic-to-dynamic mass ratio for the model approaches unity for high mass galaxies, but is generally <1 for low mass discs, and this discrepancy appears to follow a similar relationship to that shown in recent work on the Radial Acceleration Relation (RAR). Although this may support Modified Newtonian Dynamics (MOND) in preference to a Dark Matter (DM) halo, it does not exclude undetected baryonic mass or a gravitational DM component in the disc.


2004 ◽  
Vol 215 ◽  
pp. 248-257 ◽  
Author(s):  
Gibor Basri

Brown dwarfs and very low mass (VLM) stars are the last frontier on the map of the angular momentum histories of star-like objects. Until the advent of 8-m class telescopes, it was impossible to obtain spectra with enough resolution to detect their rotation. The very existence of brown dwarfs was only established then. It was immediately apparent that there are differences between VLM objects and their heftier stellar cousins. Field VLM objects were found to be very rapidly rotating, yet they did not display the strong magnetic activity that would be expected of convective objects in that case. We now have a good preliminary understanding of the situation near the substellar boundary. I summarize the rotational data (both spectroscopic and photometric) on VLM objects, and how rotation and temperature fit into the production of magnetic activty. I also report more recent work on VLM objects when they are very young. There is increasing evidence that they form much like stars, beginning (when they become visible) as relatively slow rotators for the most part, followed by spin-up as they contract. Their disk lifetimes may be shorter, and they are more magnetically active when they are young. The subsequent angular momentum history of VLM objects is different from solar-type stars, as the usual magnetic braking mechanisms do not operate as in the stellar case. Much of the new work reported here is from the thesis of Subanjoy Mohanty, and was supported by NSF/AST-0098468.


2008 ◽  
Author(s):  
Stefanie Wachter ◽  
Reba M. Bandyopadhyay ◽  
Stefanie Wachter ◽  
Dawn Gelino ◽  
Christopher R. Gelino

1999 ◽  
Vol 118 (4) ◽  
pp. 1814-1818 ◽  
Author(s):  
Donald M. Terndrup ◽  
Anita Krishnamurthi ◽  
Marc H. Pinsonneault ◽  
John R. Stauffer

2019 ◽  
Vol 486 (1) ◽  
pp. 1260-1282 ◽  
Author(s):  
Z H Zhang (张曾华) ◽  
A J Burgasser ◽  
M C Gálvez-Ortiz ◽  
N Lodieu ◽  
M R Zapatero Osorio ◽  
...  

ABSTRACT We presented 15 new T dwarfs that were selected from UKIRT Infrared Deep Sky Survey, Visible and Infrared Survey Telescope for Astronomy , and Wide-field Infrared Survey Explorer surveys, and confirmed with optical to near-infrared spectra obtained with the Very Large Telescope and the Gran Telescopio Canarias. One of these new T dwarfs is mildly metal-poor with slightly suppressed K-band flux. We presented a new X-shooter spectrum of a known benchmark sdT5.5 subdwarf, HIP 73786B. To better understand observational properties of brown dwarfs, we discussed transition zones (mass ranges) with low-rate hydrogen, lithium, and deuterium burning in brown dwarf population. The hydrogen burning transition zone is also the substellar transition zone that separates very low-mass stars, transitional, and degenerate brown dwarfs. Transitional brown dwarfs have been discussed in previous works of the Primeval series. Degenerate brown dwarfs without hydrogen fusion are the majority of brown dwarfs. Metal-poor degenerate brown dwarfs of the Galactic thick disc and halo have become T5+ subdwarfs. We selected 41 T5+ subdwarfs from the literature by their suppressed K-band flux. We studied the spectral-type–colour correlations, spectral-type–absolute magnitude correlations, colour–colour plots, and HR diagrams of T5+ subdwarfs, in comparison to these of L–T dwarfs and L subdwarfs. We discussed the T5+ subdwarf discovery capability of deep sky surveys in the 2020s.


2010 ◽  
Vol 6 (S276) ◽  
pp. 44-49
Author(s):  
Magali Deleuil ◽  
Pascal Bordé ◽  
Claire Moutou ◽  

AbstractThe CoRoT space telescope is detecting planets with the transit method for more than four years. Its tally includes hot jupiter planets with orbital periods up to 95 days but also the first Super-Earth, CoRoT-7b, whose density is similar to the Earth's one, as well as close-in brown dwarfs. We review the status of the CoRoT/Exoplanet program, including some elements of the multi step strategy of complementary observations. We then present some of the CoRoT exoplanetary systems and how they widen the range of properties of the close-in low mass population and contribute to our understanding of the properties of planets.


Sign in / Sign up

Export Citation Format

Share Document