coincidence technique
Recently Published Documents


TOTAL DOCUMENTS

197
(FIVE YEARS 11)

H-INDEX

26
(FIVE YEARS 0)

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
◽  
S. Acharya ◽  
D. Adamová ◽  
A. Adler ◽  
J. Adolfsson ◽  
...  

Abstract The ALICE Collaboration reports the first fully-corrected measurements of the N-subjettiness observable for track-based jets in heavy-ion collisions. This study is performed using data recorded in pp and Pb-Pb collisions at centre-of-mass energies of $$ \sqrt{s} $$ s = 7 TeV and $$ \sqrt{s_{\mathrm{NN}}} $$ s NN = 2.76 TeV, respectively. In particular the ratio of 2-subjettiness to 1-subjettiness, τ2/τ1, which is sensitive to the rate of two-pronged jet substructure, is presented. Energy loss of jets traversing the strongly interacting medium in heavy-ion collisions is expected to change the rate of two-pronged substructure relative to vacuum. The results are presented for jets with a resolution parameter of R = 0.4 and charged jet transverse momentum of 40 ≤ pT,jet ≤ 60 GeV/c, which constitute a larger jet resolution and lower jet transverse momentum interval than previous measurements in heavy-ion collisions. This has been achieved by utilising a semi-inclusive hadron-jet coincidence technique to suppress the larger jet combinatorial background in this kinematic region. No significant modification of the τ2/τ1 observable for track-based jets in Pb-Pb collisions is observed relative to vacuum PYTHIA6 and PYTHIA8 references at the same collision energy. The measurements of τ2/τ1, together with the splitting aperture angle ∆R, are also performed in pp collisions at $$ \sqrt{s} $$ s = 7 TeV for inclusive jets. These results are compared with PYTHIA calculations at $$ \sqrt{s} $$ s = 7 TeV, in order to validate the model as a vacuum reference for the Pb-Pb centre-of-mass energy. The PYTHIA references for τ2/τ1 are shifted to larger values compared to the measurement in pp collisions. This hints at a reduction in the rate of two-pronged jets in Pb-Pb collisions compared to pp collisions.


Author(s):  
Saikat Biswas

At Bose Institute Prof. Debendra Mohan Bose and his co-workers made globally recognised contributions in the field of cosmic rays including the first recording of mu-meson tracks. Prof. D. M. Bose and Dr. Biva Choudhury did their cosmic ray experiments at the Darjeeling campus of Bose Institute (along with Sandakphu and Pharijong). Presently the Darjeeling campus hosts a National facility for Astroparticle Physics and Space Science. In Kolkata also there is a Centre for Astroparticle Physics and Space Science (CAPSS). In these two campuses, we are still working on the R\&D of plastic scintillation detectors for the study of the cosmic rays to preserve the legacy of Prof. D. M. Bose. The only cosmic ray air shower array in the eastern part of India, consisting of seven plastic scintillator detectors is commissioned at an altitude of about 2200~meters above sea level (a.s.l.) in the Eastern Himalayas (Darjeeling) at the end of January 2018. The cosmic ray air shower array has a hexagon shape with six detectors kept at the vertices ofthe hexagon and one at the center of it. The distance between two consecutive detectors is 8 meters. Each detectorelement is made up of four plastic scintillators of dimension 50~cm~$\times$~50~cm~$\times$~1~cm thereby forming a totalactive area of 1~m$^2$. These scintillators are fabricated indigenously in the Cosmic RayLaboratory (CRL), TIFR, Ooty, India. All four scintillators of a detector are coupled with a singlePhoto Multiplier Tube (PMT) using wavelength shifting (WLS) fibers. A custom-built module withseven inputs is used to generate a multi-fold trigger. Measurement of the number of cosmic ray airshower is going on since the end of January 2018. The secondary cosmic ray flux and its variation overtime are also recorded at the laboratory in Darjeeling using a three-fold coincidence technique withplastic scintillators. All the details of the experimental setup, techniques of measurement are reported earlier. The updates in the results are presented in this article. In this review article, the details of the R\&D program of plastic scintillation detectors carried out during the last five years, for the study of cosmic ray is reported.


Author(s):  
Md. Shahinur Rahman ◽  
Wayne D. Hutchison ◽  
Lindsey Bignell ◽  
Gregory Lane ◽  
Lei Wang ◽  
...  

Abstract The SABRE (Sodium-iodide with Active Background Rejection) experiment consists of 50 kg of ultrapure NaI(Tl) crystal contained within a 10.5 ton liquid scintillator (LS) veto detector, and will search for dark matter interactions in the inner NaI(Tl) detector. The relative scintillation light yield in NaI(Tl) scintillator for different incident particle energies is not constant and is important for characterizing the detector response. The relative scintillation light yield in two different NaI(Tl) scintillators was measured with a 10 µCi 137Cs radioactive source using the Compton coincidence technique (CCT) for scattering angles 30? - 135? using electron energies ranging from 60 to 500 keVee, and these measurements are compared to the previously published results. Light yield was proportional within 3.5% at energies between 60 and 500 keVee, but non-proportionality increases drastically below 60 keVee which might be due to the non-uniform ionization density and multiple Compton scattering background events in the scintillator. An improved experimental setup with ultrapure NaI(Tl) scintillator and proper coincidence timing of radioactive events could allow scintillation light yield measurement at lower electron recoil energy. The obtained light yield non-proportionality results will be useful for the SABRE dark matter detector experiment.


Author(s):  
M. S. Schöffler ◽  
L. Ph. H. Schmidt ◽  
S. Eckart ◽  
R. Dörner ◽  
A. Czasch ◽  
...  

AbstractTo explore ultra-fast dynamics in quantum systems one needs detection schemes which allow time measurements in the attosecond regime. During the recent decades, the pump & probe two-pulse laser technique has provided milestone results on ultra-fast dynamics with femto- and attosecond time resolution. Today this technique is applied in many laboratories around the globe, since complete pump & probe systems are commercially available. It is, however, less known or even forgotten that ultra-fast dynamics has been investigated several decades earlier even with zeptosecond resolution in ion-atom collision processes. A few of such historic experiments, are presented here, where the particle motion (due to its very fast velocity) was used as chronometer to determine ultra-short time delays in quantum reaction processes. Finally, an outlook is given when in near future relativistic heavy ion beams are available which allow a novel kind of “pump & probe” experiments on molecular systems with a few zeptosecond resolution. However, such experiments are only feasible if the complete many-particle fragmentation process can be imaged with high momentum resolution by state-of-the-art multi-particle coincidence technique.


2021 ◽  
Vol 253 ◽  
pp. 11005
Author(s):  
Biswajit Das ◽  
R. Palit ◽  
R. Donthi ◽  
A. Kundu ◽  
S. R. Laskar ◽  
...  

We have characterized a Cerium doped Lanthanum Bromide (LaBr3(Ce) ) crystal coupled with the position-sensitive photo-multiplier system for the gamma-ray imaging application. One can use this detector set-up for the scanning of high purity germanium detectors for pulse shape analysis in gamma-ray spectroscopy experiments and the image formation of an object by Compton back-scattering . The sensor has been tested for energy, timing and position information of the gamma-rays interacting within the detector crystal. The GEANT4 simulation results are consistent with the experimental results. We have reconstructed the image of irradiation spots in different positions throughout the detector crystal. Position resolution is found to be around 3.5 mm with the 2 mm collimated gamma-rays. The 2-d image of hexagonal Bismuth Germanate (BGO) crystal and a cylindrical LaBr3(Ce) crystal have been reconstructed in coincidence technique. The performance of the detector for imaging application has been investigated by coincidence technique in GEANT4 simulation and compared with the experimental data. We have reconstructed the 2-d images of objects with various geometrical shapes by Compton back-scattered events of the gamma-rays. This position-sensitive detector can be used as an absorber of a Compton camera for the image reconstruction of an extended radioactive source. One can also use this kind of set-up as in radiation imaging and many other applications where the energy and source position of the gamma-ray is the main interest.


2020 ◽  
Vol 153 (22) ◽  
pp. 224201
Author(s):  
T. Majima ◽  
S. Mizutani ◽  
Y. Mizunami ◽  
K. Kitajima ◽  
H. Tsuchida ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
M. Wallner ◽  
J. H. D. Eland ◽  
R. J. Squibb ◽  
J. Andersson ◽  
A. Hult Roos ◽  
...  

AbstractL-shell ionisation and subsequent Coulomb explosion of fully deuterated methyl iodide, CD3I, irradiated with hard X-rays has been examined by a time-of-flight multi-ion coincidence technique. The core vacancies relax efficiently by Auger cascades, leading to charge states up to 16+. The dynamics of the Coulomb explosion process are investigated by calculating the ions’ flight times numerically based on a geometric model of the experimental apparatus, for comparison with the experimental data. A parametric model of the explosion, previously introduced for multi-photon induced Coulomb explosion, is applied in numerical simulations, giving good agreement with the experimental results for medium charge states. Deviations for higher charges suggest the need to include nuclear motion in a putatively more complete model. Detection efficiency corrections from the simulations are used to determine the true distributions of molecular charge states produced by initial L1, L2 and L3 ionisation.


2019 ◽  
Vol 151 ◽  
pp. 157-165
Author(s):  
J. Knezevic ◽  
D. Mrdja ◽  
K. Bikit ◽  
I. Bikit ◽  
J. Hansman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document