scintillation light
Recently Published Documents


TOTAL DOCUMENTS

257
(FIVE YEARS 53)

H-INDEX

25
(FIVE YEARS 3)

2022 ◽  
Vol 17 (01) ◽  
pp. C01031
Author(s):  
C. Vogl ◽  
M. Schwarz ◽  
X. Stribl ◽  
J. Grießing ◽  
P. Krause ◽  
...  

Abstract Liquid argon (LAr) is a common choice as detection medium in particle physics and rare-event searches. Challenges of LAr scintillation light detection include its short emission wavelength, long scintillation time and short attenuation length. The addition of small amounts of xenon to LAr is known to improve the scintillation and optical properties. We present a characterization campaign on xenon-doped liquid argon (XeDLAr) with target xenon concentrations ranging from 0 to 300 ppm by mass encompassing the measurement of the photoelectron yield Y, effective triplet lifetime τ 3 and effective attenuation length λ att. The measurements were conducted in the Subterranean Cryogenic ARgon Facility, Scarf, a 1 t (XeD)LAr test stand in the shallow underground laboratory (UGL) of TU-Munich. These three scintillation and optical parameters were observed simultaneously with a single setup, the Legend Liquid Argon Monitoring Apparatus, Llama. The actual xenon concentrations in the liquid and gaseous phases were determined with the Impurity DEtector For Investigation of Xenon, Idefix, a mass spectrometer setup, and successful doping was confirmed. At the highest dopant concentration we find a doubling of Y, a tenfold reduction of τ 3 to ∼90 ns and a tenfold increase of λ att to over 6 m.


2022 ◽  
Vol 17 (01) ◽  
pp. C01012
Author(s):  
I. Gil‐Botella

Abstract The Deep Underground Neutrino Experiment (DUNE) is a leading-edge experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE-Dual Phase (DP) is a 6 × 6 × 6 m3 liquid argon time-projection-chamber (LArTPC) operated at the CERN Neutrino Platform in 2019–2020 as a prototype of the DUNE far detector. In ProtoDUNE-DP, the scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7 m away from the ionizing track. In this paper, we present the performance of the ProtoDUNE-DP photon detection system, comparing different wavelength-shifting techniques and the use of xenon-doped LAr as a promising option for future large LArTPCs. The scintillation light production and propagation processes are analyzed and compared to simulations, improving understanding of the liquid argon properties.


2021 ◽  
Vol 16 (12) ◽  
pp. T12013
Author(s):  
M. Gandola ◽  
F. Mele ◽  
M. Grassi ◽  
P. Malcovati ◽  
G. Bertuccio

Abstract We present the experimental results of the Application Specific Integrated Circuit (ASIC), called LYRA, specifically designed for the High-Energy Rapid Modular Ensemble of Satellites (HERMES) mission concept, a constellation of nano-satellites able to detect and localize high-energy rapid transient events (up to 2.2 MeV) as the Gamma Ray Bursts (GRBs) from the deep space. LYRA has been desied for the detection system composed by a combination of Gadolinium Aluminum Gallium Garnet (GAGG) scintillators for high-energy photons, coupled to a matrix of 120 silicon drift detectors (SDD), used for detecting both scintillation light and low-energy photons. The LYRA ASIC has been conceived with a multi-chip architecture: 120 LYRA Front-End chips (LYRA-FE) are placed in close proximity to the anodes of the SDD matrix for a first processing of the detector signals and trasmit them in current mode to four 32-channel LYRA Back-End chips (LYRA-BE) to complete the elaboration. The requirements that the LYRA ASIC have to fulfill for the HERMES project are challenging: the maximum input energy measured in Silicon must reach 120 keV — corresponding to 2.2 MeV on GAGG — with a linearity error below 1%, the electronic noise must be less then 30 el. r.m.s. and the power consumption less then 1 mW per channel in a system with 120 channels working in parallel. The characterization of LYRA has been carried out on a dedicated test board, coupling one channel of the ASIC with a 25 mm2 SDD. An input full scale range of 5.2 fC and an electronic noise of 22 el. r.m.s. have been measured at -33∘C with a power consumption of 745 µW per channel.


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
M. G. Boulay ◽  
V. Camillo ◽  
N. Canci ◽  
S. Choudhary ◽  
L. Consiglio ◽  
...  

AbstractA large number of particle detectors employ liquid argon as their target material owing to its high scintillation yield and its ability to drift ionization charge over large distances. Scintillation light from argon is peaked at 128 nm and a wavelength shifter is required for its efficient detection. In this work, we directly compare the light yield achieved in two identical liquid argon chambers, one of which is equipped with polyethylene naphthalate (PEN) and the other with tetraphenyl butadiene (TPB) wavelength shifter. Both chambers are lined with enhanced specular reflectors and instrumented with SiPMs with a coverage fraction of approximately 1%, which represents a geometry comparable to the future large scale detectors. We measured the light yield of the PEN chamber to be  39.4$$\,\pm \,$$ ± 0.4(stat)$$\,\pm \,$$ ± 1.9(syst)% of the yield of the TPB chamber. Using a Monte Carlo simulation this result is used to extract the wavelength shifting efficiency of PEN relative to TPB equal to 47.2$$\,\pm \,$$ ± 5.7%. This result paves the way for the use of easily available PEN foils as a wavelength shifter, which can substantially simplify the construction of future liquid argon detectors.


2021 ◽  
Vol 16 (12) ◽  
pp. P12033
Author(s):  
K. Mizukoshi ◽  
T. Maeda ◽  
Y. Nakano ◽  
S. Higashino ◽  
K. Miuchi

Abstract Scintillation detector is widely used for the particle detection in the field of particle physics. Particle detectors containing fluorine-19 (19F) are known to have advantages for Weakly Interacting Massive Particles (WIMPs) dark matter search, especially for spin-dependent interactions with WIMPs due to its spin structure. In this study, the scintillation properties of carbontetrafluoride (CF4) gas at low temperature were evaluated because its temperature dependence of light yield has not been measured. We evaluated the light yield by cooling the gas from room temperature (300 K) to 263 K. As a result, the light yield of CF4 was found to increase by (41.0 ± 4.0stat. ± 6.6syst.)% and the energy resolution was also found to improve at low temperature.


2021 ◽  
Vol 81 (11) ◽  
Author(s):  
M. Andreotti ◽  
P. Bernardini ◽  
A. Bersani ◽  
S. Bertolucci ◽  
S. Biagi ◽  
...  

AbstractThe capture of scintillation light emitted by liquid Argon and Xenon under molecular excitations by charged particles is still a challenging task. Here we present a first attempt to design a device able to have a sufficiently high photon detection efficiency, in order to reconstruct the path of ionizing particles. The study is based on the use of masks to encode the light signal combined with single-photon detectors, showing the capability to detect tracks over focal distances of about tens of centimeters. From numerical simulations it emerges that it is possible to successfully decode and recognize signals, even of rather complex topology, with a relatively limited number of acquisition channels. Thus, the main aim is to elucidate a proof of principle of a technology developed in very different contexts, but which has potential applications in liquid argon detectors that require a fast reading. The findings support us to think that such innovative technique could be very fruitful in a new generation of detectors devoted to neutrino physics.


2021 ◽  
Vol 81 (10) ◽  
Author(s):  
Angel Abusleme ◽  
Thomas Adam ◽  
Shakeel Ahmad ◽  
Rizwan Ahmed ◽  
Sebastiano Aiello ◽  
...  

AbstractAtmospheric neutrinos are one of the most relevant natural neutrino sources that can be exploited to infer properties about cosmic rays and neutrino oscillations. The Jiangmen Underground Neutrino Observatory (JUNO) experiment, a 20 kton liquid scintillator detector with excellent energy resolution is currently under construction in China. JUNO will be able to detect several atmospheric neutrinos per day given the large volume. A study on the JUNO detection and reconstruction capabilities of atmospheric $$\nu _e$$ ν e  and $$\nu _\mu $$ ν μ  fluxes is presented in this paper. In this study, a sample of atmospheric neutrino Monte Carlo events has been generated, starting from theoretical models, and then processed by the detector simulation. The excellent timing resolution of the 3” PMT light detection system of JUNO detector and the much higher light yield for scintillation over Cherenkov allow to measure the time structure of the scintillation light with very high precision. Since $$\nu _e$$ ν e  and $$\nu _\mu $$ ν μ  interactions produce a slightly different light pattern, the different time evolution of light allows to discriminate the flavor of primary neutrinos. A probabilistic unfolding method has been used, in order to infer the primary neutrino energy spectrum from the detector experimental observables. The simulated spectrum has been reconstructed between 100 MeV and 10 GeV, showing a great potential of the detector in the atmospheric low energy region.


Author(s):  
Kenichi Watanabe ◽  
Takayuki YANAGIDA ◽  
Daisuke NAKAUCHI ◽  
Noriaki KAWAGUCHI

2021 ◽  
Vol 81 (7) ◽  
Author(s):  
R. Santorelli ◽  
E. Sanchez Garcia ◽  
P. Garcia Abia ◽  
D. González-Díaz ◽  
R. Lopez Manzano ◽  
...  

AbstractWe performed a time-resolved spectroscopic study of the VUV/UV scintillation of gaseous argon as a function of pressure and electric field, by means of a wavelength sensitive detector operated with different radioactive sources. Our work conveys new evidence of distinctive features of the argon light which are in contrast with the general assumption that, for particle detection purposes, the scintillation can be considered to be largely monochromatic at 128 nm (second continuum). The wavelength and time-resolved analysis of the photon emission reveal that the dominant component of the argon scintillation during the first tens of ns is in the range [160, 325] nm. This light is consistent with the third continuum emission from highly charged argon ions/molecules. This component of the scintillation is field-independent up to 25 V/cm/bar and shows a very mild dependence with pressure in the range [1, 16] bar. The dynamics of the second continuum emission is dominated by the excimer formation time, whose variation as a function of pressure has been measured. Additionally, the time and pressure-dependent features of electron-ion recombination, in the second continuum band, have been measured. This study opens new paths toward a novel particle identification technique based on the spectral information of the noble-elements scintillation light.


Sign in / Sign up

Export Citation Format

Share Document