cytopathogenic effect
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 15)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Vol 25 (1) ◽  
pp. 181-193
Author(s):  
H. M. I. AL-HYALI

Monolayer tissue cultures of chicken embryo fibroblast ( CEF ) cells infected with avian influenza virus isolate were examined by the hematoxylie and eosin (H&E) staining and indirect immunoperoxidase test for studying the cytopathogenic effect of the virus. Cytopathological changes which occurred in the uncleus of infected cells included nuclear and nucleolar hypertropy, chromatin margination and intranuclear inclusions. The most striking cytoplasmic change were the presence of perinuclear. eosinophilic inclusions at 22-36 hours post inoculation ( p. i.). Vacuolization, and granulation were also observed. Indirect immunoperoxidase ( IP ) test demonstrated the localization of influenza virus antigens in infected cells. A positive peroxidase reaction observed in the nucleus and cytoplasm were similar to those shown hematoxyline and eosin staining.


2021 ◽  
Vol 66 (5-6) ◽  
pp. 4-10
Author(s):  
V. S. Smirnov ◽  
I. A. Leneva ◽  
T. A. Kudryavtseva ◽  
E. B. Fayzuloev ◽  
V. A. Zaplutanov ◽  
...  

Introduction. The COVID-19 pandemic has stimulated the search for drugs with specific antiviral activity against the new pathogenic strain of the SARS-CoV-2 coronavirus. First of all, scientific search was aimed at studying drugs with already proven efficacy against influenza and ARVI. The aim of this work was to study the antiviral activity of Cytovir®-3 in vitro in relation to the cytopathogenic effect of the SARS-CoV-2 virus. Material and methods. The antiviral activity of the drug Cytovir®-3 against the SARS-CoV-2 virus was studied in experimental models in vitro on Vero CCL81 cell culture (ATCC). The maximum tolerated concentration and the 50% cytotoxic dose were determined using a quantitative microculture tetrazolium test assay to calculate the working range of the concentrations of the test drug. Results and discussion. As a result of the study, it was shown that the greatest activity of the drug was manifested when it was added to the cells 24 hours before and 1 hour and 24 hours after viral infection, the inhibition level reached 53% (>IC50) at the drug concentrations of 105, 55, and 85 µg/ml, respectively. Cytovir®-3 suppressed the viral activity of SARS-CoV-2 in the dose range from 10 µg/ml to 105 µg/ml under the indicated infection conditions. It was found that the drug did not exhibit cytotoxic effects on the Vero cell culture in the range of antiviral doses. Conclusion. The antiviral activity of Cytovir®-3 against the SARS-CoV-2 virus has been proven due to the achievement of IC50, which is below the maximum tolerated dose of 149 µg/ml.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11980
Author(s):  
Amudha Deepalakshmi Maharajan ◽  
Hilde Hansen ◽  
Miriam Khider ◽  
Nils Peder Willassen

Background Quorum Sensing (QS) is a cell-to-cell communication system that bacteria utilize to adapt to the external environment by synthesizing and responding to signalling molecules called autoinducers. The psychrotrophic bacterium Aliivibrio wodanis 06/09/139, originally isolated from a winter ulcer of a reared Atlantic salmon, produces the autoinducer N-3-hydroxy-decanoyl-homoserine-lactone (3OHC10-HSL) and encodes the QS systems AinS/R and LuxS/PQ, and the master regulator LitR. However, the role of QS in this bacterium has not been investigated yet. Results In the present work we show that 3OHC10-HSL production is cell density and temperature-dependent in A. wodanis 06/09/139 with the highest production occurring at a low temperature (6 °C). Gene inactivation demonstrates that AinS is responsible for 3OHC10-HSL production and positively regulated by LitR. Inactivation of ainS and litR further show that QS is involved in the regulation of growth, motility, hemolysis, protease activity and siderophore production. Of these QS regulated activities, only the protease activity was found to be independent of LitR. Lastly, supernatants harvested from the wild type and the ΔainS and ΔlitR mutants at high cell densities show that inactivation of QS leads to a decreased cytopathogenic effect (CPE) in a cell culture assay, and strongest attenuation of the CPE was observed with supernatants harvested from the ΔlitR mutant. Conclusion A. wodanis 06/09/139 use QS to regulate a number of activities that may prove important for host colonization or interactions. The temperature of 6 °C that is in the temperature range at which winter ulcer occurs, plays a role in AHL production and development of CPE on a Chinook Salmon Embryo (CHSE) cell line.


Author(s):  
E. A. Lyalyukova ◽  
I. V. Dolgalev ◽  
E. N. Chernysheva ◽  
I. V. Druk ◽  
G. M. Konovalova ◽  
...  

The purpose of the review is to present an analysis of the current literature data on the pathogenesis and therapy of liver damage in Covid-19. Liver damage in COVID-19 patients can be caused by the direct cytopathogenic effect of SARS-CoV-2, an uncontrolled immune response, sepsis, severe hypoxia, or drug damage. In addition, COVID-19 can exacerbate and decompensate previously formed chronic liver diseases with the development of acute liver failure. Physicians should carefully assess the initial state of the liver, and after prescribing therapy, intensify monitoring of its functional state, especially in patients with severe COVID-19. In each clinical case, the doctor needs to establish the possible mechanisms of organ damage in order to select the most optimal patient management tactics, which would take into account all aspects of the COVID-19 course and liver damage. Currently, additional scientific information is required to uncover the features of liver damage during SARS-CoV-2 infection and in the postcovid period. Patients who have undergone COVID-19 need further monitoring to assess the long-term effects of the disease.


2021 ◽  
Vol 9 (4) ◽  
pp. 734
Author(s):  
Lana Langendries ◽  
Rana Abdelnabi ◽  
Johan Neyts ◽  
Leen Delang

Despite the emerging threat of the Mayaro virus (MAYV) in Central and South-America, there are no licensed antivirals or vaccines available for this neglected mosquito-borne virus. Here, we optimized a robust antiviral assay based on the inhibition of the cytopathogenic effect that could be used for high-throughput screening to identify MAYV inhibitors. We first evaluated different cell lines and virus inputs to determine the best conditions for a reliable and reproducible antiviral assay. Next, we used this assay to evaluate a panel of antiviral compounds with known activity against other arboviruses. Only three drugs were identified as inhibitors of MAYV: β-D-N4-hydroxycytidine (EIDD-1931), favipiravir and suramin. The in vitro anti-MAYV activity of these antiviral compounds was further confirmed in a virus yield assay. These antivirals can therefore serve as reference compounds for future anti-MAYV compound testing. In addition, it is of interest to further explore the activity of EIDD-1931 and its orally bioavailable pro-drug molnupiravir in animal infection models to determine whether it offers promise for the treatment of MAYV infection.


2021 ◽  
Vol 12 ◽  
Author(s):  
Marie-Bénédicte Le Stang ◽  
Jordan Desenclos ◽  
Martin Flamant ◽  
Benjamin G. Chousterman ◽  
Nahid Tabibzadeh

Kidney involvement is a common complication during SARS-CoV-2 infection. Its association with poor outcomes, especially in critically ill patients, raises issues whether kidney involvement reflects multi-organ damage or if it is a specific feature of the infection. Based on observational studies, autopsy series, and on current understanding of the route of entry of the virus, this review will highlight the different types of kidney involvement during COVID-19 and put them in the perspective of the different pathophysiological hypotheses. Virus entry route through ACE2 ligation and TMPRSS2 coligation allows identifying potential viral targets in the kidney, including tubules, endothelial cells, and glomerulus. While reports have described damages of all these structures and virus kidney tropism has been identified in renal extracts in autopsy series, no direct viral infection has been found in the latter structures thus far on kidney biopsies. Notwithstanding the technical challenge of disclosing viral invasion within tissues and cells, viral direct cytopathogenic effect generally does not appear as the cause of the observed renal damage. Inflammation and altered hemodynamics, described as “viral sepsis,” might rather be responsible for organ dysfunction, including kidneys. We shall place these various mechanisms into an integrated vision where the synergy between direct viral pathogenicity and systemic inflammation enhances renal damage. As SARS-CoV-2 inexorably continues its rampant spread, understanding the sequence of events in the kidneys might thus help inform improved therapeutic strategies, including antiviral drugs and immunomodulators.


Pathology ◽  
2020 ◽  
Vol 52 (7) ◽  
pp. 816-818 ◽  
Author(s):  
Kinan Drak Alsibai ◽  
Celine Michaud ◽  
Alex Taquet ◽  
Magalie Demar ◽  
Romain Blaizot

2020 ◽  
Vol 8 (9) ◽  
pp. 1353 ◽  
Author(s):  
Afra Khiralla ◽  
Rosella Spina ◽  
Mihayl Varbanov ◽  
Stéphanie Philippot ◽  
Pascal Lemiere ◽  
...  

An endophytic fungus isolated from Vernonia amygdalina, a medicinal plant from Sudan, was taxonomically characterized as Curvularia papendorfii. Ethyl acetate crude extract of C. papendorfii revealed an important antiviral effect against two viral pathogens, the human coronavirus HCoV 229E and a norovirus surrogate, the feline coronavirus FCV F9. For the last one, 40% of the reduction of the virus-induced cytopathogenic effect at lower multiplicity of infection (MOI) 0.0001 was observed. Selective antibacterial activity was obtained against Staphylococcus sp. (312 µg/mL), and interesting antiproliferative activity with half maximal inhibitory concentration (IC50) value of 21.5 ± 5.9 µg/mL was observed against human breast carcinoma MCF7 cell line. Therefore, C. papendorfii crude extract was further investigated and fractionated. Twenty-two metabolites were identified by gas chromatography coupled to mass spectrometry (GC–MS), and two pure compounds, mannitol and a new polyhydroxyacid, called kheiric acid, were characterized. A combination of spectroscopic methods was used to elucidate the structure of the new aliphatic carboxylic acid: kheiric acid (3,7,11,15-tetrahydroxy-18-hydroxymethyl-14,16,20,22,24-pentamethyl-hexacosa-4E,8E,12E,16,18-pentaenoic acid). Kheiric acid showed an interesting result with a minimum inhibitory concentration (MIC) value of 62.5 µg/mL against meticillin-resistant Staphylococcus aureus (MRSA). Hence, endophytes associated with medicinal plants from Sudan merit more attention, as they could be a treasure of new bioactive compounds.


2020 ◽  
Author(s):  
Kai S. Yang ◽  
Xinyu R. Ma ◽  
Yuying Ma ◽  
Yugendar R. Alugubelli ◽  
Danielle A. Scott ◽  
...  

ABSTRACTThe COVID-19 pathogen, SARS-CoV-2, requires its main protease (SC2MPro) to digest two of its translated polypeptides to form a number of mature proteins that are essential for viral replication and pathogenesis. Inhibition of this vital proteolytic process is effective in preventing the virus from replication in infected cells and therefore provides a potential COVID-19 treatment option. Guided by previous medicinal chemistry studies about SARS-CoV-1 main protease (SC1MPro), we have designed and synthesized a series of SC2MPro inhibitors that contain β-(S-2-oxopyrrolidin-3-yl)-alaninal (Opal) for the formation of a reversible covalent bond with the SC2MPro active site cysteine C145. All inhibitors display high potency with IC50 values at or below 100 nM. The most potent compound MPI3 has as an IC50 value as 8.5 nM. Crystallographic analyses of SC2MPro bound to 7 inhibitors indicated both formation of a covalent bond with C145 and structural rearrangement from the apoenzyme to accommodate the inhibitors. Virus inhibition assays revealed that several inhibitors have high potency in inhibiting the SARS-CoV-2-induced cytopathogenic effect in both Vero E6 and A549 cells. Two inhibitors MP5 and MPI8 completely prevented the SARS-CoV-2-induced cytopathogenic effect in Vero E6 cells at 2.5-5 μM and A549 cells at 0.16-0.31 μM. Their virus inhibition potency is much higher than some existing molecules that are under preclinical and clinical investigations for the treatment of COVID-19. Our study indicates that there is a large chemical space that needs to be explored for the development of SC2MPro inhibitors with extreme potency. Due to the urgent matter of the COVID-19 pandemic, MPI5 and MPI8 may be quickly advanced to preclinical and clinical tests for COVID-19.


Author(s):  
Erol C. Vatansever ◽  
Kai Yang ◽  
Kaci C. Kratch ◽  
Aleksandra Drelich ◽  
Chia-Chuan Cho ◽  
...  

ABSTRACTGuided by a computational docking analysis, about 30 FDA/EMA-approved small molecule medicines were characterized on their inhibition of the SARS-CoV-2 main protease (MPro). Of these tested small molecule medicines, six displayed an IC50 value in inhibiting MPro below 100 μM. Three medicines pimozide, ebastine, and bepridil are basic small molecules. Their uses in COVID-19 patients potentiate dual functions by both raising endosomal pH to slow SARS-CoV-2 entry into the human cell host and inhibiting MPro in infected cells. A live virus-based microneutralization assay showed that bepridil inhibited cytopathogenic effect induced by SARS-CoV-2 in Vero E6 cells completely at and dose-dependently below 5 μM and in A549 cells completely at and dose-dependently below 6.25 μM. Therefore, the current study urges serious considerations of using bepridil in COVID-19 clinical tests.


Sign in / Sign up

Export Citation Format

Share Document