single prolonged stress
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 43)

H-INDEX

28
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Yao Chen ◽  
Lei Tong ◽  
Peng-Yin Nie ◽  
Yu-Lu Chen ◽  
Lili Ji

Abstract BackgroundMicroRNA-124-3p (miR-124) plays an important role in neuroprotective functions in various neurological disorders, but whether miR-124 participates in the pathological progression of posttraumatic stress disorder (PTSD) remains poorly understood. MethodsIn the present study, we evaluated the level of neuroinflammation in the hippocampus of rats exposed to single-prolonged stress (SPS) by western blot and immunofluorescence staining, while the effect of miR-124 on PTSD-like behaviors was evaluated by behavioral test. ResultsOur results demonstrated that the level of miR-124 in the hippocampus of rats exposed to SPS was downregulated and that the upregulation of miR-124 could alleviate the PTSD-like behaviors of SPS rats. This effect of miR-124 might be achieved through TNF receptor-associated Factor 6 (TRAF6), which is a target gene of miR-124 and plays an important role in the immune and inflammatory reaction by regulating nuclear factor kappa-B (NF-κB). Furthermore, we found that miR-124 not only decreased the level of proinflammatory cytokines but also increased the expression levels of synaptic proteins (PSD95 and synapsin I) and regulated the morphology of neurons. ConclusionThese results suggested that miR-124 might attenuate PTSD-like behaviors and decrease the level of proinflammatory cytokines by downregulating the expression of TRAF6 in the hippocampus of rats exposed to SPS.


2021 ◽  
Vol 15 ◽  
Author(s):  
Lucas Canto-de-Souza ◽  
Peyton G. Demetrovich ◽  
Samantha Plas ◽  
Rimenez R. Souza ◽  
Joseph Epperson ◽  
...  

Post-traumatic stress disorder (PTSD) is associated with decreased activity in the prefrontal cortex. PTSD-like pathophysiology and behaviors have been observed in rodents exposed to a single prolonged stress (SPS) procedure. When animals are left alone for 7 days after SPS treatment, they show increased anxiety-like behavior and impaired extinction of conditioned fear, and reduced activity in the prefrontal cortex. Here, we tested the hypothesis that daily optogenetic stimulation of the infralimbic region (IL) of the medial prefrontal cortex (mPFC) during the 7 days after SPS would reverse SPS effects on anxiety and fear extinction. Male Sprague-Dawley rats underwent SPS and then received daily optogenetic stimulation (20 Hz, 2 s trains, every 10 s for 15 min/day) of glutamatergic neurons of the left or right IL for seven days. After this incubation period, rats were tested in the elevated plus-maze (EPM). Twenty-four hours after the EPM test, rats underwent auditory fear conditioning (AFC), extinction training and a retention test. SPS increased anxiety-like behavior in the EPM task and produced a profound impairment in extinction of AFC. Optogenetic stimulation of the left IL, but not right, during the 7-day incubation period reversed the extinction impairment. Optogenetic stimulation did not reverse the increased anxiety-like behavior, suggesting that the extinction effects are not due to a treatment-induced reduction in anxiety. Results indicate that increased activity of the left IL after traumatic experiences can prevent development of extinction impairments. These findings suggest that non-invasive brain stimulation may be a useful tool for preventing maladaptive responses to trauma.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jinlan Ding ◽  
Xinzhao Chen ◽  
Fang Han ◽  
Onno C. Meijer

Stress-related neuropsychiatric disorders are often accompanied by dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis. In patients suffering from post-traumatic stress disorder (PTSD), increased sensitivity of glucocorticoid negative feedback has regularly been observed. The single prolonged stress (SPS) paradigm was developed to model increased negative feedback and other aspects of PTSD in rats. In this study, we used a setup that precluded the evaluation of negative feedback but rather served to test the hypothesis of the enhanced glucocorticoid receptor (GR) signaling in higher brain areas. We injected corticosterone or vehicle 7 days after SPS and evaluated plasma corticosterone, as well as gene expression in the dorsal hippocampus and amygdala. We observed a strikingly rapid change in the expression of established GR target genes (t = 30 min) only in the SPS group on exogenous corticosterone injection. Our results extend the notion of increased GR sensitivity in PTSD to include transcriptional responses in the hippocampus.


2021 ◽  
Vol 15 ◽  
Author(s):  
Roxanna J. Nahvi ◽  
Arax Tanelian ◽  
Chiso Nwokafor ◽  
Callie M. Hollander ◽  
Lauren Peacock ◽  
...  

The susceptibility to stress-elicited disorders is markedly influenced by sex. Women are twice as likely as men to develop posttraumatic stress disorder (PTSD), depression, anxiety disorders, and social impairments following exposure to traumatic stress. However, most of the studies in animal models examining putative therapeutics for stress-triggered impairments, including single prolonged stress (SPS), were performed predominantly with males. Previous studies in males demonstrated that intranasal neuropeptide Y (NPY) can provide therapeutic relief of many SPS-triggered behaviors, but is ineffective in females at the same dose. Thus, females may need a higher dose of exogenous NPY to attain a therapeutically significant concentration since the overwhelming majority of studies found that NPY levels in females in many brain regions are lower than in male rodents. Here, we examined SPS as an appropriate model to elicit many PTSD-associated symptoms in females and whether intranasal NPY at higher doses than with males is able to alter the development of SPS-triggered behavioral impairments. Sprague-Dawley female rats were exposed to SPS only, or in a separate cohort after SPS stressors were immediately infused intranasally with one of several doses of NPY, starting with 600 μg/rat—four times the dose effective in males. In the third cohort of animals, females were infused intranasally with either 600 μg NPY, omarigliptin [a dipeptidyl peptidase IV (DPP4) inhibitor], or both right after the SPS stressors. After 19 days they were tested on several behavioral tests. SPS elicited significant depressive/despair like behavior on the forced swim test (FST), anxiety behavior on the elevated plus maze (EPM), as well as impaired social interaction. On the FST, there was a dose-response effect of intranasal NPY, with 1,200 μg, but not 600 μg, preventing the development of the SPS-elicited depressive-like behavior. The omarigliptin and 600 μg NPY combined treatment, but neither alone, was also sufficient at preventing depressive-like behavior on the FST. The results demonstrate that: (1) SPS elicits several behavioral manifestations of PTSD in females; (2) early intervention with a high dose of intranasal NPY has therapeutic potential also for females; and (3) NPY cleavage by DPP4 may play a role in the higher dose requirement for females.


2021 ◽  
Vol 15 ◽  
Author(s):  
Nawshaba Nawreen ◽  
Mark L. Baccei ◽  
James P. Herman

Post-traumatic stress disorder (PTSD) is a chronic, debilitating mental illness marked by abnormal fear responses and deficits in extinction of fear memories. The pathophysiology of PTSD is linked to decreased activation of the ventromedial prefrontal cortex (vmPFC). This study aims to investigate underlying functional changes in synaptic drive and intrinsic excitability of pyramidal neurons in the rodent homolog of the vmPFC, the infralimbic cortex (IL), following exposure to single prolonged stress (SPS), a paradigm that mimics core symptoms of PTSD in rats. Rats were exposed to SPS and allowed 1 week of recovery, following which brain slices containing the PFC were prepared for whole-cell patch clamp recordings from layer V pyramidal neurons in the IL. Our results indicate that SPS reduces spontaneous excitatory synaptic drive to pyramidal neurons. In addition, SPS decreases the intrinsic membrane excitability of IL PFC pyramidal cells, as indicated by an increase in rheobase, decrease in input resistance, hyperpolarization of resting membrane potential, and a reduction in repetitive firing rate. Our results suggest that SPS causes a lasting reduction in PFC activity, supporting a body of evidence linking traumatic stress with prefrontal hypoactivity.


2021 ◽  
Vol 15 ◽  
Author(s):  
Chantelle Ferland-Beckham ◽  
Lauren E. Chaby ◽  
Nikolaos P. Daskalakis ◽  
Dayan Knox ◽  
Israel Liberzon ◽  
...  

Posttraumatic stress disorder (PTSD) is a mental health condition triggered by experiencing or witnessing a terrifying event that can lead to lifelong burden that increases mortality and adverse health outcomes. Yet, no new treatments have reached the market in two decades. Thus, screening potential interventions for PTSD is of high priority. Animal models often serve as a critical translational tool to bring new therapeutics from bench to bedside. However, the lack of concordance of some human clinical trial outcomes with preclinical animal efficacy findings has led to a questioning of the methods of how animal studies are conducted and translational validity established. Thus, we conducted a systematic review to determine methodological variability in studies that applied a prominent animal model of trauma-like stress, single prolonged stress (SPS). The SPS model has been utilized to evaluate a myriad of PTSD-relevant outcomes including extinction retention. Rodents exposed to SPS express an extinction retention deficit, a phenotype identified in humans with PTSD, in which fear memory is aberrantly retained after fear memory extinction. The current systematic review examines methodological variation across all phases of the SPS paradigm, as well as strategies for behavioral coding, data processing, statistical approach, and the depiction of data. Solutions for key challenges and sources of variation within these domains are discussed. In response to methodological variation in SPS studies, an expert panel was convened to generate methodological considerations to guide researchers in the application of SPS and the evaluation of extinction retention as a test for a PTSD-like phenotype. Many of these guidelines are applicable to all rodent paradigms developed to model trauma effects or learned fear processes relevant to PTSD, and not limited to SPS. Efforts toward optimizing preclinical model application are essential for enhancing the reproducibility and translational validity of preclinical findings, and should be conducted for all preclinical psychiatric research models.


SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A42-A42
Author(s):  
Katelyn Gutowsky ◽  
Carolyn Jones ◽  
Miranda Lim

Abstract Introduction Sleep problems are common in humans with post-traumatic stress disorder (PTSD). Rapid eye movement (REM) sleep is involved in processing emotional memories; it is often disrupted in those with PTSD, and may be related to increased anxiety. Single prolonged stress (SPS) is a protocol used to model PTSD in rats, however little is known about how this model impacts sleep in mice. Prior research suggests SPS produces short term disturbances in REM sleep and increases in anxiety-like behavior, but further validation of this model is needed to understand how SPS impacts sleep and anxiety-like behaviors in mice specifically, as they have greater potential for transgenic manipulation Methods C57BL6/J mice underwent a SPS protocol in which they were tube-restrained for 2 hours, followed by a 15 minute forced swim in a group, ether exposure until loss of consciousness, and 10 days of social isolation. Following SPS, mice were tested for anxiety-like behavior in a light-dark box and sleep was measured from surgically implanted EEG and EMG leads. Time spent in wake, REM sleep, and non-REM sleep was quantified for 24 continuous hours in SPS and Control mice. Results There were no significant effects of SPS on the amount of time spent in any vigilance state, or in sleep-wake transitions. However, SPS-exposed mice showed significantly more anxiety-like behavior. EEG power spectra were analyzed in relevant frequency bands during each sleep state, and exploratory analyses were conducted Conclusion Minimal effects on sleep macroarchitecture were seen in mice 10 days after SPS. It is possible that sleep disturbances seen immediately after trauma exposure (such as in prior studies in rats) may have diminished over time. Further studies will need to include additional timepoints and analysis of sleep microarchitecture following SPS, and in other mouse models of PTSD, in order to more comprehensively examine changes in sleep. Support (if any) VA CDA #IK2 BX002712, Portland VA Research Foundation, Medical Research Foundation


Sign in / Sign up

Export Citation Format

Share Document