scholarly journals Hydrogeochemical and Characteristics of Groundwater in Teluk Nilap Area, Rokan Hilir, Riau

Author(s):  
Fitri Mairizki ◽  
Arief Yandra Putra ◽  
Widya Adiza Putri ◽  
Ferdyansyah

Groundwater plays important role as the main water resource for human needs. The vulnerability of groundwater to contaminants both naturally and by human activities can be not avoided as a trigger for groundwater quality degradation. Hydrogeochemical become important highlights in groundwater studies because groundwater conditions in quality and quantity influenced by the geological formation of rock minerals in aquifer. Naturally, the condition of the research area which consists of peat swamps can also affect the characteristics of groundwater. The aims of this research are to determine groundwater types and groundwater facies in study area with an analytical approach using stiff diagram and piper diagram. The method used was purposive sampling by collecting data from dug wells at the research site. 5 samples from dug wells were used as representatives in the groundwater facies analysis. The groundwater facies analysis was carried out by measuring the concentration of major ions such as Na, K, Ca, Mg, Cl, SO4, and HCO3. The highest groundwater level was in the northern part of study area (7,84 m) while the lowest groundwater level was in the southwest part of study area (2,05 m). The results showed three types of groundwater based on stiff diagram as sodium chloride (NaCl), sodium sulfate (NaSO4) and magnesium sulfate (MgSO4). The lithology conditions that composed the aquifer affected the facies or origin of groundwater. The alluvium layer in the research area which rich in sodium (Na+) minerals with chloride (Cl-) or sulfate (SO42-) anions forms chloride sulfate facies (Cl+SO4) which were located in the middle to the south of the study area and sodium (potassium) chloride (sulfate) facies (Na(K)Cl(SO4)) which were distributed in the northern part of study area.

Author(s):  
Ya Sun ◽  
Shiguo Xu ◽  
Qin Wang ◽  
Suduan Hu ◽  
Guoshuai Qin ◽  
...  

With a shifting climate pattern and enhancement of human activities, coastal areas are exposed to threats of groundwater environmental issues. This work takes the eastern coast of Laizhou Bay as a research area to study the response of a coastal groundwater system to natural and human impacts with a combination of statistical, hydrogeochemical, and fuzzy classification methods. First, the groundwater level dynamics from 1980 to 2017 were analyzed. The average annual groundwater level dropped 13.16 m with a descent rate of 0.379 m/a. The main external environmental factors that affected the groundwater level were extracted, including natural factors (rainfall and temperature), as well as human activities (irrigated area, water-saving irrigated area, sown area of high-water-consumption crops, etc.). Back-propagation artificial neural network was used to model the response of groundwater level to the above driving factors, and sensitivity analysis was conducted to measure the extent of impact of these factors on groundwater level. The results verified that human factors including irrigated area and water-saving irrigated area were the most important influencing factors on groundwater level dynamics, followed by annual precipitation. Further, groundwater samples were collected over the study area to analyze the groundwater hydrogeochemical signatures. With the hydrochemical diagrams and ion ratios, the formation of groundwater, the sources of groundwater components, and the main hydrogeochemical processes controlling the groundwater evolution were discussed to understand the natural background of groundwater environment. The fuzzy C-means clustering method was adopted to classify the groundwater samples into four clusters based on their hydrochemical characteristics to reveal the spatial variation of groundwater quality in the research area. Each cluster was spatially continuous, and there were great differences in groundwater hydrochemical and pollution characteristics between different clusters. The natural and human factors resulted in this difference were discussed based on the natural background of the groundwater environment, and the types and intensity of human activity.


2020 ◽  
pp. 73-89
Author(s):  
Kofoworola Olatunde ◽  
Modupe Sarumi ◽  
Sadiq Abdulsalaam ◽  
Babatunde Bada ◽  
Funmilola Oyebanji

Groundwater forms a very important part of the water supply chain and its quality can be affected by improperly constructed septic tanks used by homeowners in peri-urban locations such as Abeokuta in recent times. Sixty groundwater samples collected from hand-dug wells ≤15m from septic tanks were analysed for physicochemical and bacteriological parameters using standard procedures. Results were integrated with multivariate and hydrogeochemical analyses to assess the effect improperly built septic tanks have on groundwater quality around the Federal University of Agriculture, Abeokuta. The range of values for the measured parameters include: pH (6.26 – 8.66), EC (83 – 1035 μS cm-1), TDS (42 – 621 mg L-1), Mg2+ (2 – 60 mg L-1), NO3- (5.09 – 17 mg L-1), Fe (-.04 – 5.32 mg L-1), BOD (0.1 – 13.2) and E. Coli (ND – 41×10 cfu mL-1). The abundance of major ions are in the order Ca2+˃Mg2+˃K+˃ Na+ and Cl- ˃SO42- >HCO3- >NO3- ˃PO42-. The piper trilinear plot shows that the dominant hydrochemical facies in the study area is the Ca2+–Cl- type. A correlation analysis and a principal component analysis both reflect intrusions from biological wastes such as surrounding septic tanks or municipal waste disposals as well as dissolutions from basal rocks. The possibility of infiltration from sewage into groundwater is confirmed by the number of samples with high BOD, NO3-, and E. coli concentrations. Contamination of groundwater with sewage exposes the populace to acute excreta-related illness. This therefore calls for stringent monitoring and management measures to be put in place by relevant regulatory authorities to safeguard the human health and environment within the study area.


2020 ◽  
Vol 12 (2) ◽  
Author(s):  
T. Listyani R.A. ◽  
Dianto Isnawan ◽  
Ign. Adi Prabowo

This research is a hydrogeological survey activity with the aim to determine the geological characteristics of groundwater in the Hargorejo area, Kokap Sub-district, West Progo. The study wants to know about the pattern of groundwater flow and water quality in the area. The northern part of the research area is included in the non-groundwater basin region of the West Progo Dome, while the southern part is included in Wates Groundwater Basin. Method of research is a field hydrogeological survey, to obtain geological and groundwater data. Groundwater flow pattern and quality analyses are based on groundwater data and pH, TDS and EC values. Groundwater can be obtained from springs or dug wells, with relatively shallow groundwater tables. The pattern of groundwater flow is generally to the south, with the H4 / H5 basin boundary type. Groundwater quality is quite good, with a pH value of 6.2 -7; TDS 191 - 558 ppm, and EC ranges from 279-783 µS / cm.


2021 ◽  
Vol 240 ◽  
pp. 02006
Author(s):  
Saadia Asouam ◽  
Farid Faik ◽  
Zine El Abidine El Morjani

The aim of this work was to study the physicochemical characterization and heavy metal testing results carried out for leachate generated by the landfilling of household and similar waste in the Tamellast landfill of Agadir. The surface and groundwater resource (often used as drinking source) samples collected from Tamellast and different water sources wells surrounding the landfill were used to find out the impact of leachate percolation on surface and groundwater quality. The Physico-chemical parameters analyzed were, pH, Electrical Conductivity (EC), Dissolved oxygen, Sodium, Potassium, while biological parameters tested were Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), E.Coli and Coliform tot. The contamination was investigated by measuring the concentration of heavy metals (Pb, Zn, Cr, Ni, As, and Fe). The Electrical Conductivity (EC), COD, BOD, Sodium, Potassium, in leachate were found to be 13180 µs/cm, 3150 mgO2/l, 1000 mgO2/l, 2000 mg/L, and 10700 mg/L, respectively. The concentration in the surrounding dug wells varied from 8.33 – 9.13 mg/L for Dissolved Oxygen, 9.8 – 18 mg/L for potassium, 0.22 – 0.6 mg/L for Fe, and 0.012 – 0.1 mg/L for total Mn. The concentration of Mn, Fe, and other parameters decreased with increasing distance between the landfill and wells.


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2546
Author(s):  
Fuchu Dai ◽  
Qinghua Guo

Water induced loess landslides are closely related to the rise of the groundwater level. Therefore, research on the response of the groundwater level to irrigation water holds promise for revealing the mechanism of water-induced loess landslide. Taking Heitai, Gansu Province, as the research area, a coupling model o unsaturated-saturated water movement is established using the HYDRUS-MODFLOW software. The parameters of the model are calibrated and verified by the Bayesian parameter inversion method combined with field observations of the groundwater level. Finally, the change in the groundwater level under different irrigation amounts is predicted using the optimized model. It is found that a reasonable reduction of the irrigation amount can effectively slow the rise of the groundwater level. This research provides a scientific reference for the development of reasonable irrigation measures.


1987 ◽  
Vol 38 (6) ◽  
pp. 861 ◽  
Author(s):  
BT Hart ◽  
EM Ottaway ◽  
BN Noller

A materials budget was estimated for the Magela Creek system during the 1982-83 wet season. This tropical system in northern Australia consists largely of a well-defined creek (Magela Creek contributes approximately 50% of the total inflow to the floodplain) flowing into an extensive wetlands area and then into the East Alligator River. Intensive sampling of creek water, rainfall and water flowing from the system provided the data base for the budget calculations. The annual transport of both dissolved and particulate matter by Magela Creek (area 600 km2) is very low, even when compared with other low-relief tropical systems. The annual load transported during 1982-83 was 1260 t (21 kg ha-1) of dissolved salts and 2330 t (39 kg ha-1) of particulate matter. Rainfall appeared to contribute all the sodium, potassium and chloride, and part of the calcium (c. 30%) and magnesium (25%) transported during the 1982-83 wet season by Magela Creek. Most of the manganese (c. 60%) (and probably iron) was contributed from weathering processes occurring in the catchment. Only small amounts of the trace metals copper, lead, zinc and uranium were transported by the creek. During the 1982-83 wet season, more trace metals were contributed in rainfall than transported from the catchment by the creek. However, this is probably atypical and resulted from dust particles that had entered the atmosphere in greater numbers due to the extended dry season. The vast bulk of the nutrients (total P 93%, NO3- N 86%, NH4+ N 98%) added to the catchment by rainfall was removed by the catchment, probably via uptake by the vegetation. Consequently, the creek transported only very small amounts of nutrients to the floodplain. An input-output budget for the Magela floodplain was calculated. The uncertainty in the net amounts deposited or released from the floodplain was estimated using a new quantitative method developed for this purpose. The uncertainties in the net values estimated were high, ranging from around 30% for bicarbonate to 500% for uranium. These data suggest that the Magela floodplain is a net source of the major ions (sodium, potassium, calcium, magnesium, chloride, sulfate and bicarbonate) and also of iron, and a net sink for suspended solids, nutrients (total phosphorus, nitrate and ammonia) and manganese. The floodplain also appears to be a net sink for the trace metals copper, lead, zinc and uranium.


2012 ◽  
Vol 24 (2) ◽  
pp. 181-192 ◽  
Author(s):  
Maria Zita Tabosa Pinheiro de Queiroz Lima Lucio ◽  
Simone Setúbal dos Santos ◽  
Daniela Mariano Lopes da Silva

AIM: The aim of this study is to evaluate the spatial-temporal changes of chemical elements in the surface waters of the Cachoeira River in order to evaluate the impacts of anthropogenic activities in water quality; METHODS: Samples were collected monthly between August 2008 and August 2009 at six collection points along the river. The abiotic parameters dissolved oxygen, pH, electrical conductivity and temperature were performed in the field using portable digital meters; concentration of ions nitrite (NO2-), nitrate (NO3-), ammonia (NH4+), phosphate (PO4-), sodium (Na+), calcium (Ca+2), potassium (K+), chloride (Cl-), magnesium (Mg+2), sulfate (SO4-2) were determined by ion chromatography and bicarbonate (HCO3-) was calculated by a model of ionic associations originated from alkalinity values; RESULTS: The spatial variations showed that anthropogenic activities and land use changes (cocoa crops and pasture) appear to be the major factors influencing the distribution of nutrients in the Cachoeira River; however, lithology seems to be the factor influencing the major ions; CONCLUSIONS: Variations in ion concentrations were directly related to drought and rainy periods, the geological formation, and the various land uses. The lack of treatment of domestic wastes and their incorrect disposal in water bodies has significantly contributed to the aggravation of environmental problems and consequently the health of the population.


1995 ◽  
Vol 52 (4) ◽  
pp. 754-767 ◽  
Author(s):  
James W. LaBaugh ◽  
Donald O. Rosenberry ◽  
Thomas C. Winter

Groundwater seepage was the largest annual flux of water into (58–76%) and out of (73–83%) Williams Lake during a 12-year study, during which the entire volume of the lake was replaced four times. The only other water fluxes to and from the lake, which has no surface-water inlet or outlet, were atmospheric precipitation and evaporation. Nearly all of the annual input of calcium, magnesium, sodium, potassium, chloride, sulfate, and silica was provided by groundwater. Although much of the calcium and most of the silica input was retained in the lake, this retention did not result in increased chemical mass in the lake water mass because biologically mediated removal of calcium and silica to the sediments equaled or exceeded loss by lake seepage to groundwater. Groundwater represented as much as one-half the annual hydrological input of phosphorus and nitrogen; the remainder was supplied by atmospheric precipitation. From about 70 to 90% of the annual input of phosphorus and nitrogen was retained in the lake. Although water and chemical fluxes varied from year to year, interaction of the lake with groundwater determined the hydrological and chemical characteristics of Williams Lake.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 856
Author(s):  
Zhiwei Qi ◽  
Changlai Xiao ◽  
Ge Wang ◽  
Xiujuan Liang

A suitable groundwater level is an important condition to maintain the stability of the vegetation community, especially in arid and semi-arid areas. The surface of Qian’an County in Western Jilin Province is often accompanied by salinization due to the influence of natural and human factors. In order to maintain the healthy development of ecological vegetation and reduce the risk of soil salinization, the concept of an ecological threshold of groundwater level is proposed, and two methods are used to determine the reasonable ecological threshold of groundwater. (1) Based on field investigation and indoor experiment, the data layer of soil texture, land use type and groundwater mineralization degree in the research area was established by using remote sensing technology and GIS technology. According to the thickness of vegetation root layer and the height of capillary rise of different soil and water types, the influence of groundwater salinity is considered, and the sum of the two is taken as the ecological threshold of groundwater in the study area. The reasonable threshold value of suitable growth of various vegetation crops is 3.76~5.66 m. (2) According to the relationship between the normalized vegetation index (NDVI) and the groundwater buried depth and phreatic salt, the groundwater buried depth and the mineralization degree under the best vegetation cover are analyzed as follows: the buried depth of groundwater is between 4.8 m and 6.1 m, and the salinity of groundwater is between 0.37 and 1.25 g/L, which are reasonable groundwater properties in the study area of the ecological threshold. This result not only enriches and broadens the content of groundwater research, but also helps to predict the prospect of water resource development.


2021 ◽  
Vol 8 (3) ◽  
pp. 2709-2718
Author(s):  
Wahyu Wilopo ◽  
R Risanti ◽  
Raja Susatio ◽  
Doni Prakasa Eka Putra

The Parangtritis area is a tourist destination in Yogyakarta, Indonesia, consisting of dunes and plains. One of the essential parameters in tourist areas is the provision of water sources. The increase in tourist visits and the development of tourism facilities in this area have increased groundwater utilization. Therefore, this study aims to assess the potential of seawater intrusion in the Parangtritis Beach area and its surroundings, Indonesia. The research was carried out by surveying, field measurements, and groundwater samples to test major ions in the laboratory. Indications of seawater intrusion are based on TDS values, Cl-, Simpson ratio, Sodium Chloride ratio, BEX, and groundwater type. The results showed that the research area had a shallow groundwater level with groundwater flow relative to the south-southwest and composed of unconfined aquifers. Only two water samples indicate seawater intrusion from Parangwedang spring and its southern place based on the geochemical analysis. However, this spring was formed due to geological structure related to geothermal manifestation and not due to seawater intrusion. It has a lateral flow to the south and is mixed with shallow groundwater, thereby increasing the chloride concentration in the groundwater. The sea-freshwater interface has a depth from 52 meters to 284 meters from sea level, where the farther from the coastline, the more profound.


Sign in / Sign up

Export Citation Format

Share Document