scholarly journals Preconditioning With Intermittent Hypobaric Hypoxia Attenuates Stroke Damage and Modulates Endocytosis in Residual Neurons

2021 ◽  
Vol 12 ◽  
Author(s):  
Yaqi Wan ◽  
Lu Huang ◽  
Yanmin Liu ◽  
Weizhong Ji ◽  
Changxing Li ◽  
...  

Background: Moderate hypobaric hypoxia induces cerebral ischemic tolerance. We investigated the optimal method for applying hypobaric hypoxia preconditioning at 5,000 m to ischemic brain tissue and combined it with proteomics to determine the mechanisms underlying this effect.Methods: Male SD rats were randomly grouped as S (sham, n = 20), M (middle cerebral artery occlusion [MCAO], n = 28), H2M (intermittent hypobaric hypoxia preconditioned MCAO group, 2 h/day, 10 days, n = 20), H6M (intermittent hypobaric hypoxia preconditioned MCAO group, 6 h/day, 10 days, n = 28), and HpM (persistent hypobaric hypoxia preconditioned MCAO group, 10 days, n = 28). The permanent MCAO model was established based on the Zea Longa method. Infarction was assessed with the modified neurological severity score (mNSS) and 2,3,5-triphenyl tetrazolium chloride staining. The total protein expression of the neuron-specific nuclear protein (NeuN), cysteinyl aspartate specific proteinase 3 (caspase-3), cleaved-caspase-3, and interleukin 6 (IL-6) was determined using western blotting. We assessed the peri-infarct cortex's ultrastructural changes. A label-free proteomic study and western blot verification were performed on the most effective preconditioned group.Results: The H6M group showed a lower infarct volume (p = 0.0005), lower mNSS score (p = 0.0009) than the M group. The H2M showed a lower level of IL-6 (p = 0.0213) than the M group. The caspase-3 level decreased in the H2M (p = 0.0002), H6M (p = 0.0025), and HpM groups (p = 0.0054) compared with that in the M group. Cleaved-caspase-3 expression decreased in the H2M (p = 0.0011), H6M (p < 0.0001), and HpM groups (p < 0.0001) compared with that in the M group. The neurons' ultrastructure and the blood-brain barrier in the peri-infarct tissue improved in the H2M and H6M groups. Immunofluorescence revealed increased NeuN-positive cells in the peri-infarct tissue in the H6M group (p = 0.0003, H6M vs. M). Protein expression of Chmp1a, Arpc5, and Hspa2 factors related to endocytosis were upregulated in the H6M compared with those of the M group (p < 0.05 for all) on western blot verification of label-free proteomics.Conclusions: Intermittent hypobaric hypoxia preconditioning exerts a neuroprotective effect in a rat stroke model. Persistent hypobaric hypoxia stimulation exhibited no significant neuroprotective effect. Intermittent hypoxic preconditioning for 6 h/day for 10 days upregulates key proteins in clathrin-dependent endocytosis of neurons in the cortex.

2011 ◽  
Vol 300 (6) ◽  
pp. H2280-H2287 ◽  
Author(s):  
Hui-cai Guo ◽  
Fang Guo ◽  
Li-Nan Zhang ◽  
Rong Zhang ◽  
Qing Chen ◽  
...  

Chronic intermittent hypobaric hypoxia (CIHH) has been shown to attenuate intracellular Na+ accumulation and Ca2+ overload during ischemia and reperfusion (I/R), both of which are closely related to the outcome of myocardial damage. Na/K pump plays an essential role in maintaining the equilibrium of intracellular Na+ and Ca2+ during I/R. It has been shown that enhancement of Na/K pump activity by ischemic preconditioning may be involved in the cardiac protection. Therefore, we tested whether Na/K pump was involved in the cardioprotection by CIHH. We found that Na/K pump current in cardiac myocytes of guinea pigs exposed to CIHH increased 1.45-fold. The K 1 and f 1, which reflect the portion of α1-isoform of Na/K pump, dramatically decreased or increased, respectively, in CIHH myocytes. Western blot analysis revealed that CIHH increased the protein expression of the α1-isoform by 76%, whereas the protein expression of the α2-isoform was not changed significantly. Na/K pump current was significantly suppressed in simulated I/R, and CIHH preserved the Na/K pump current. CIHH significantly improved the recovery of cell length and contraction during reperfusion. Furthermore, inhibition of Na/K pump by ouabain attenuated the protective effect afforded by CIHH. Collectively, these data suggest that the increase of Na/K pump activity following CIHH is due to the upregulating α1-isoform of Na/K pump, which may be one of the mechanisms of CIHH against I/R-induced injury.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Junqiang Yan ◽  
Hongxia Ma ◽  
Xiaoyi Lai ◽  
Jiannan Wu ◽  
Anran Liu ◽  
...  

Abstract Background Parkinson’s disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease. The oxidative stress is an important component of the pathogenesis of PD. Artemisinin (ART) has antioxidant and neuroprotective effects. The purpose of this study is to explore the neuroprotective effect of ART on 1-methyl-4-phenyliodine iodide (MPP +)-treated SH-SY5Y cells and underlying mechanism. Methods We used MPP+-treated SH-SY5Y cells to study the neuroprotective effect of ART. Cell viability was measured by MTT assay after incubating the cells with MPP+ and/or ART for 24 h. DCFH-DA was used to detect the level of intracellular reactive oxygen species (ROS), and WST-8 was used to detect the level of superoxide dismutase (SOD). The level of intracellular reduced glutathione (GSH) was detected with 5,5΄-dithiobis-(2-nitrobenzoic acid), and the level of malondialdehyde (MDA) was assessed based on the reaction of MDA and thiobarbituric acid. A mitochondrial membrane potential detection kit (JC-1) was used to detect changes in the mitochondrial membrane potential (MMP), and an Annexin V-FITC cell apoptosis kit was used to detect cell apoptosis. The expression levels of caspase-3, cleaved caspase-3 and the autophagy-related proteins LC3, beclin-1, and p62 were detected by Western blotting. In addition, to verify the change in autophagy, we used immunofluorescence to detect the expression of LC3 and p62. Results No significant cytotoxicity was observed at ART concentrations up to 40 μM. ART could significantly increase the viability of SH-SY5Y cells treated with MPP+ and reduce oxidative stress damage and apoptosis. In addition, the Western blotting and immunofluorescence results showed that MPP+ treatment could increase the protein expression of beclin1 and LC3II/LC3I and decrease the protein expression of p62, indicating that MPP+ treatment could induce autophagy. Simultaneous treatment with ART and MPP+ could decrease the protein expression of beclin1 and LC3II/LC3I and increase the protein expression of p62, indicating that ART could decrease the level of autophagy induced by MPP+. Conclusion Our results indicate that ART has a protective effect on MPP+-treated SH-SY5Y cells by the antioxidant, antiapoptotic activities and inhibition of autophagy. Our findings may provide new hope for the prevention and treatment of PD.


Proceedings ◽  
2019 ◽  
Vol 40 (1) ◽  
pp. 3
Author(s):  
Oğuz ◽  
Adan

The mechanisms underlying the growth inhibitory effect of resveratrol on Ph+ ALL cells were investigated with regard to targeting of ceramide metabolism and changes in BCR-ABL expression. Growth inhibition and apoptotic effects of resveratrol, SK inhibitor (SKI II), GCS inhibitor (PDMP), SPT inhibitor (myriocin) and resveratrol-inhibitor combinations were investigated by MTT cell proliferation test, Annexin-V/PI staining, caspase-3, PARP expression and cytochrome c release by western blot, while cytostatic effect was investigated by flow cytometry. The effect of resveratrol, inhibitors and combinations on BCR-ABL protein expression was determined by western blot. In addition, the effect of resveratrol on SPT, SK-1/2, GCS protein expression was determined by western blot. In both cell lines resveratrol and resveratrol with SKI II and PDMP suppressed cell growth, triggered apoptosis and arrested the cell cycle at S phase. The combination of resveratrol with myriocin showed cell-specific effects on cell growth and cell cycle, but triggered apoptosis in both cells. In both cell types, resveratrol and combinations generally increased cytochrome-c release, caspase-3 cleavage and PARP cleavage, but cell-specific changes were also detected. Resveratrol decreased the expression of SK-1/SK2 and GCS in both cells and increased SPT expression. While resveratrol, SKI II and PDMP decreased BCR-ABL expression and myriocin increased BCR-ABL expression. Resveratrol together with SKI II and PDMP caused increases in BCR-ABL, while combination with myriocin reduced BCR-ABL expression. As a result, resveratrol suppressed cell growth and triggered apoptosis in Ph+ ALL by regulating ceramide metabolism and BCR-ABL expression.


2018 ◽  
Vol 50 (5) ◽  
pp. 1891-1902 ◽  
Author(s):  
Shuo Gu ◽  
Hong Hua ◽  
Xinqi Guo ◽  
Zhanfeng Jia ◽  
Yi Zhang ◽  
...  

Background/Aims: Myocardial ischemia/reperfusion (I/R) or hypoxia/reoxygenation (H/R) injury is always characterized by Ca2+ overload, energy metabolism disorder and necrocytosis of cardiomyocytes. We showed previously that chronic intermittent hypobaric hypoxia (CIHH) improves cardiac function during I/R through improving cardiac glucose metabolism. However, the underlying cellular and molecular mechanisms of CIHH treatment improving energy metabolism in cardiomyocytes are still unclear. In this study, we determined whether and how CIHH protects cardiomyocytes from Ca2+ overload and necrocytosis through energy regulating pathway. Methods: Adult male Sprague-Dawley rats were randomly divided into two groups: control (CON) and CIHH group. CIHH rats received a hypobaric hypoxia simulating 5,000-m altitude for 28 days, 6 hours each day, in hypobaric chamber. Rat ventricular myocytes were obtained by enzymatic dissociation. The intracellular calcium concentration ([Ca2+]i) and cTnI protein expression were used to evaluate the degree of cardiomyocytes injury during and after H/R. The mRNA and protein expressions involved in cardiac energy metabolism were determined using quantitative PCR and Western blot techniques. PGC-1α siRNA adenovirus transfection was used to knock down PGC-1α gene expression of cardiomyocytes to determine the effect of PGC-1α in the energy regulating pathway. Results: H/R increased [Ca2+]i and cTnI protein expression in cardiomyocytes. CIHH treatment decreased [Ca2+]i (p< 0.01) and cTnI protein expression (p< 0.01) in cardiomyocytes after H/R. Both mRNA and protein expression of PGC-1α increased after CIHH treatment, which was reversed by PGC-1α siRNA adenovirus transfection. Furthermore, CIHH treatment increased the expression of HIF-1α, AMPK and p-AMPK in cardiomyocytes, and pretreatment with AMPK inhibitor dorsomorphin abolished the enhancement of PGC-1α protein expression in cardiomyocytes by CIHH (p< 0.01). In addition, PGC-1α knock down also abolished the increased protein level of GLUT4 (p< 0.01) and decreased the protein level of CPT-1b (p< 0.05) in cardiomyocytes by CIHH treatment. Conclusion: CIHH treatment could reduce the calcium overload and H/R injury in cardiomyocytes by up-regulating the expression of PGC-1α and regulating the energy metabolism of glucose and lipid. The HIF-1α-AMPK signaling pathway might be involved in the process.


Reproduction ◽  
2015 ◽  
Vol 150 (4) ◽  
pp. 343-355 ◽  
Author(s):  
Agnieszka Rak ◽  
Eliza Drwal ◽  
Anna Wróbel ◽  
Ewa Łucja Gregoraszczuk

Previously, we demonstrated the expression of resistin in the porcine ovary, the regulation of its expression and its direct effect on ovarian steroidogenesis. The objective of this study was to examine the effect of resistin on cell proliferation and apoptosis in a co-culture model of porcine granulosa and theca cells. First, we analysed the effect of resistin at 1 and 10 ng/ml alone or in combination with FSH- and IGF1 on ovarian cell proliferation with an alamarBlue assay and protein expression of cyclins A and B using western blot. Next, the mRNA and protein expression of selected pro-apoptotic and pro-survival regulators of cell apoptosis, caspase-9, -8 and -3 activity and DNA fragmentation using real time PCR, western blot, fluorescent assay and an ELISA kit, respectively, were analysed after resistin treatment. Furthermore, we determined the effect of resistin on the protein expression of ERK1/2, Stat and Akt kinase. Using specific inhibitors of these kinases, we also checked caspase-3 activity and protein expression. We found that resistin, at both doses, has no effect on cell proliferation. The results showed that resistin decreased pro-apoptotic genes, which was confirmed on protein expression of selected factors. We demonstrate an inhibitory effect of resistin on caspase activity and DNA fragmentation. Finally, resistin stimulated phosphorylation of the ERK1/2, Stat and Akt and kinases inhibitors reversed resistin action on caspase-3 activity and protein expression to control. All of these results showed that resistin has an inhibitory effect on porcine ovarian cell apoptosis by activation of the MAPK/ERK, JAK/Stat and Akt/PI3 kinase signalling pathways.


2021 ◽  
Author(s):  
Junqiang Yan ◽  
Hongxia Ma ◽  
Xiaoyi Lai ◽  
Jiannan Wu ◽  
Anran Liu ◽  
...  

Abstract Background Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease. The oxidative stress is an important component of the pathogenesis of PD. Artemisinin (ART) have antioxidant and neuroprotective effects. The purpose of this study was to explore the neuroprotective effect of ART on 1-methyl-4-phenyliodine iodide (MPP+)-treated SH-SY5Y cells and underlying mechanism .Methods We used MPP+-treated SH-SY5Y cells to study the neuroprotective effect of ART. Cell viability was measured by MTT assay after incubating the cells with MPP+ and/or ART for 24 h. DCFH-DA was used to detect the level of intracellular reactive oxygen species (ROS), and WST-8 was used to detect the level of superoxide dismutase (SOD). The level of intracellular reduced glutathione (GSH) was detected using 5,5'-dithiobis-(2-nitrobenzoic acid), and the level of malondialdehyde (MDA) was assessed by measuring the reaction of MDA and thiobarbituric acid. A mitochondrial membrane potential detection kit (JC-1) was used to detect changes in the mitochondrial membrane potential (MMP), and an Annexin V-FITC cell apoptosis kit was used to detect cell apoptosis. The expression levels of caspase-3, cleaved caspase-3 and the autophagy-related proteins LC3, beclin-1, and p62 were detected by Western blotting. In addition, to verify the change in autophagy, we used immunofluorescence to detect the expression of LC3 and p62.Results No significant cytotoxicity was observed at ART concentrations up to 40 μM. ART could significantly increase the viability of SH-SY5Y cells treated with MPP+ and reduce oxidative stress damage and apoptosis. In addition, the Western blotting and immunofluorescence results showed that MPP+ treatment could increase the protein expression of beclin1 and LC3II/LC3I and decrease the protein expression of P62, indicating that MPP+ treatment could induce autophagy. Simultaneous treatment with ART and MPP+ could decrease the protein expression of beclin1 and LC3II/LC3I and increase the protein expression of p62, indicating that ART could decrease the level of autophagy induced by MPP+.Conclusion Our results indicate that ART has a protective effect on MPP+-treated SH-SY5Y cells by the antioxidant, antiapoptotic activities and inhibition of autophagy. Our findings may provide new hope for the prevention and treatment of PD.


2018 ◽  
Vol 45 (6) ◽  
pp. 2246-2256 ◽  
Author(s):  
Zhiquan Lv ◽  
Chong Liu ◽  
Meili Zhai ◽  
Qian Zhang ◽  
Jun Li ◽  
...  

Background/Aims: Lipopolysaccharide (LPS) pretreatment has a strong neuroprotective effect on cerebral ischaemia/reperfusion injury (IRI), but the mechanism has not been fully elucidated to date. This study investigated the effect of LPS pretreatment on the pathway mediated by endoplasmic reticulum (ER) stress–CCAAT/enhancer-binding protein- homologous protein (CHOP) and the role of this pathway on cerebral ischaemia/reperfusion (I/R)-induced inflammation and apoptosis. Methods: Healthy male BALB/c mice were randomised into four groups as follows: sham operation group (sham group, n=30); LPS group (BALB/c mice treated with LPS, n=30); ischaemia/reperfusion group (I/R group, n=30) and I/R+LPS group (BALB/c mice treated with LPS before ischaemia, n=30). The mice were pre-treated with LPS (0.2 mg/kg) intra-peritoneally for three days prior to cerebral ischaemia. After 24 hours, the neurological deficit score, TTC staining and TUNEL assay were used to assess the neuroprotective effect of the LPS pretreatment against cerebral IRI. To assess whether the ER stress-CHOP pathway participated in the LPS-pretreatment neuroprotective mechanism, the expression levels of related proteins (GRP78, CHOP, caspase-12 and caspase-3) from the ischaemic cortical penumbra were detected via a western blot analysis. An immunohistochemical study was used to detect the expression and location of CHOP in the cortical penumbra. To further assess the protective effect of the LPS pretreatment, the concentrations of inflammatory factors (TNF-α, IL-6, IL-1β and IL-10) in the cortical penumbra were measured by ELISA, and ER stress-CHOP pathway inflammation-related caspase-11 was analysed through western blot analysis. Results: As demonstrated by the experiments, the pretreatment with LPS significantly reduced the neurological deficit score and the infarct size of cerebral IRI. The expression levels of ER stress-CHOP pathway related proteins (GRP78, CHOP, caspase-12 and caspase-3) from the cortical penumbra were significantly decreased by LPS, as well as the level of apoptosis in the cells in the brain. Immunohistochemistry showed that the expression of CHOP significantly decreased after the LPS pretreatment. Furthermore, the concentrations of inflammatory factors (TNF-α, IL-1β, IL-6) were reduced after the LPS pretreatment, whereas the anti-inflammatory cytokine IL-10 was upregulated. In addition, ER stress-CHOP pathway inflammation-related caspase-11 expression was significantly suppressed after the pretreatment with LPS. Conclusions: LPS pretreatment significantly ameliorates the effects of cerebral IRI by inhibiting inflammation and apoptosis, and the potential mechanism of the neuroprotective effect may be associated with the ER stress-CHOP mediated signalling pathway.


2017 ◽  
Vol 43 (3) ◽  
pp. 1273-1287 ◽  
Author(s):  
Chengmei Lv ◽  
Surendra Maharjan ◽  
Qingqing Wang ◽  
Yongxin Sun ◽  
Xu Han ◽  
...  

Background/Aims: Alpha-lipoic acid (α-LA) has been demonstrated to be protective against cerebral ischemia injury. Herein, we investigate the neuroprotective effect and underlying mechanisms of α-LA. Methods: In vivo study, α-LA was administered intravenously upon reperfusion of transient middle cerebral artery occlusion. Garcia score was used to evaluate neurologic recovery. Infarct volume was examined by TTC staining, and oxidative damage was evaluated by ELISA assay. In an in vitro study, neurons were pretreated with α-LA at different doses and then subjected to OGD. Lentiviral vectors were applied to knockdown nuclear factor-erythroid 2-related factor-2 (Nrf2) or heme oxygenase-1 (HO-1). Cell viability was measured using CCK8. Protein expression was evaluated using western blot, and immunofluorescence staining was assessed. Results: α-LA significantly reduced the infarct volume, brain edema, and oxidative damage and promoted neurologic recovery in rats. Pretreatment of α-LA caused an obvious increase in cell viability and a decrease in intracellular reactive oxygen species. Western blot analyses and immunofluorescence staining demonstrated a distinct increase in Nrf2 and HO-1 protein expression. Conversely, knockdown of Nrf2 or HO-1 resulted in the down-regulation of HO-1 protein and inhibited the neuroprotective effect of α-LA. Conclusion: α-LA treatment is neuroprotective and promotes functional recovery after ischemic stroke by attenuating oxidative damage, which is partially mediated by the Nrf2/HO-1 pathway.


2020 ◽  
Author(s):  
Shiya Wang ◽  
Cao Zou ◽  
Xiaofeng Liu ◽  
Yonjin Yan ◽  
Shunzhon Gu ◽  
...  

Abstract Objective To investigate the effect of palmitate (PAL) on apoptosis and the timing and activity of VEGF expression in HHHM2 myocardial cells (a human embryonic cardiomyocyte cell- line). Methods 1. Cardiomyocytes were divided into the following five groups: the control group and the 0.2 mM, 0.5 mM, 0.8 mM, and 1.2 mM PAL groups. We examined the changes in cell viability by MTT assay after PAL incubation for 24 h and the cardiomyocyte apoptosis rate by FACS examination, and thus determined the effective concentration of PAL. The transcription levels of CASP3, Bcl-2, Bax, and VEGF were detected by quantitative fluorescence PCR and the protein expression of caspase 3 and VEGF by western blot. 2. To observe the time-dependent effects on cell injury induced by 0.5 mM PAL, cardiomyocytes were divided into 0, 4, 8, 16, 24, and 48 h groups. The variation in cell viability was examined by MTT assay. The transcription levels of CASP3, Bcl-2, Bax, and VEGF were detected by quantitative fluorescence PCR and the protein expression of caspase 3 and VEGF by western blot. 3. To observe the effects of VEGF on the PAL induced apoptosis of cardiomyocytes, the cells were divided into the control group and the VEGF overexpression group. At 24 h after transfection, cells were incubated with 0.5 mM PAL for 6, 12, 24, and 48 h. Cell viability was examined by MTT assay. The apoptosis rate was measured by FACS using the Annexin V-FITC kit. The transcription levels of CASP3, Bcl-2, Bax, NF-kB p65, and VEGF were measured by quantitative fluorescence PCR, the protein expression of VEGF, caspase 3, Bcl-2, Bax, NF-κB p65, p-JNK/JNK, and p-ERK/ERK were measured by western blot, as well as caspase 3 activity. Results 1. A dose-dependent relation between the concentration of PAL and H9c2 cardiomyocyte injury was observed. In the 0.5 mM group, the apoptosis rate was increased significantly, while cell viability was decreased, indicating that 0.5 mM PAL was the ideal concentration to induce cardiomyocyte apoptosis. The expression of caspase 3 and Bax was significantly increased, and the expression of VEGF was enhanced, while the levels of Bcl-2 remained unchanged during the process. 2. A significant time-dependent relation between PAL and cardiomyocyte injury was observed. The apoptosis rate was increased greatly after 16 h treatment with 0.5 mM PAL. 3. Cell viability was restored by VEGF overexpression during treatment with 0.5 mM PAL. The apoptosis rate was also reduced by VEGF overexpression, as detected by FACS. The expression of caspase 3, Bax, and NF-κB p65 was significantly decreased, Bcl-2 and VEGF expression was dramatically increased, p-JNK/JNK expression was significantly enhanced, p-ERK/ERK levels did not exhibit a significant change, and the activity of caspase 3 was significantly decreased. Conclusions 1. PAL can induce injury and apoptosis in HHHM2 myocardial cells, and these effects are time-dependent. A PAL concentration of 0.5 mM was ideal to establish the cardiac cell injury model. 2. PAL at a concentration of 0.5 mM can effectively induce cardiomyocyte injury and enhance the expression of caspase 3, Bax, and VEGF, especially after 24 h and 48 h of PAL treatment. 3. VEGF overexpression can reverse the effects of PAL on apoptosis and cell viability. In addition, VEGF overexpression inhibited the expression of proapoptotic and inflammatory factors, caspase 3 activity, and transduction of the MAPK signaling pathway.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Le Li ◽  
Qing-guo Zhang ◽  
Lu-ying Lai ◽  
Xian-jie Wen ◽  
Ting Zheng ◽  
...  

Local anesthetics are used routinely and effectively. However, many are also known to activate neurotoxic pathways. We tested the neuroprotective efficacy of ginkgolide B (GB), an active component of Ginkgo biloba, against ROS-mediated neurotoxicity caused by the local anesthetic bupivacaine. SH-SY5Y cells were treated with different concentrations of bupivacaine alone or following preincubation with GB. Pretreatment with GB increased SH-SY5Y cell viability and attenuated intracellular ROS accumulation, apoptosis, mitochondrial dysfunction, and ER stress. GB suppressed bupivacaine-induced mitochondrial depolarization and mitochondria complex I and III inhibition and increased cleaved caspase-3 and Htra2 expression, which was strongly indicative of activation of mitochondria-dependent apoptosis with concomitantly enhanced expressions of Grp78, caspase-12 mRNA, protein, and ER stress. GB also improved ultrastructural changes indicative of mitochondrial and ER damage induced by bupivacaine. These results implicate bupivacaine-induced ROS-dependent mitochondria, ER dysfunction, and apoptosis, which can be attenuated by GB through its antioxidant property.


Sign in / Sign up

Export Citation Format

Share Document