scholarly journals The Properties of Thermochemical Remanent Magnetization Acquired by Slow Laboratory Cooling of Titanomagnetite-Bearing Basalt Samples from Different Temperatures and the Results of the Thellier Method

2021 ◽  
Vol 57 (6) ◽  
pp. 913-926
Author(s):  
S. K. Gribov ◽  
V. P. Shcherbakov ◽  
V. A. Tsel’movich ◽  
N. A. Aphinogenova

Abstract—The experiments have been carried out on the acquisition of thermochemical remanent magnetization (TCRM) in basalt samples containing titanomagnetite (TM) with the Curie temperature Тс ~200°C by their rapid heating to maximum temperatures Т* from 450 to 530°C followed by slow cooling in the laboratory magnetic field Blab. At different stages of the preliminary thermal treatment of the initial samples, a set of magnetomineralogical studies including electron microscopy, X-ray diffraction and thermomagnetic analyzes, and measurements of magnetic hysteresis parameters were performed. It is shown that as early as the very beginning of the cooling process, all samples demonstrate explosive growth of TCRM corresponding to the stage of rapid single-phase oxidation of the initial titanomagnetite fraction of basalt, and that TCRM is acquired by the increase of Тс and volume of single-phase oxidized parts of TM grains as well as by the growth of the volume of Ti-depleted (relative to the initial TM) cells of microstructure of the subsequent oxidative exsolution. The Arai–Nagata diagrams for the samples carrying TCRM have a form of a broken line consisting of two linear segments. The low-temperature interval T < Т* corresponds to a mixture of thermochemical and thermoremanent (TRM) magnetizations and gives a slightly overestimated Blab because of the effect of a low cooling rate during the acquisition of TCRM and TRM. The high-temperature interval corresponds to pure TCRM and the Blab strength determined from this interval is underestimated by 20–27%. It is recommended to reject samples whose Araii–Nagata diagram has two or more linear segments against the background single-component NRM.

2015 ◽  
Vol 7 (1) ◽  
pp. 1346-1351
Author(s):  
Ch.Gopal Reddy ◽  
Ch. Venkateshwarlu ◽  
P. Vijaya Bhasker Reddy

Co-Zr substituted M-type hexagonal barium ferrites, with chemical formula BaCoxZrxFe12-2xO19 (where x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0), have been synthesized by double sintering ceramic method. The crystallographic properties, grain morphology and magnetic properties of these ferrites have been investigated by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Vibrating Sample Magnetometer (VSM). The XRD patterns confirm the single phase with hexagonal structure of prepared ferrites. The magnetic properties have been investigated as a function of Co and Zr ion composition at an applied field in the range of 20 KOe. These studies indicate that the saturation magnetization (Ms) in the samples increases initially up to the Co-Zr composition of x=0.6 and decreases thereafter. On the other hand, the coercivity (Hc) and Remanent magnetization (Mr) are found to decrease continuously with increasing Co-Zr content. This property is most useful in permanent magnetic recording. The observed results are explained on the basis of site occupation of Co and Zr ions in the samples.


Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1278
Author(s):  
Alina Daniela Crisan ◽  
Aurel Leca ◽  
Dan Pantelica ◽  
Ioan Dan ◽  
Ovidiu Crisan

Magnetic nanoscale materials exhibiting the L10 tetragonal phase such as FePt or ternary alloys derived from FePt show most promising magnetic properties as a novel class of rare earth free permanent magnets with high operating temperature. A granular alloy derived from binary FePt with low Pt content and the addition of Mn with the nominal composition Fe57Mn8Pt35 has been synthesized in the shape of melt-spun ribbons and subsequently annealed at 600 °C and 700 °C for promoting the formation of single phase, L10 tetragonal, hard magnetic phase. Proton-induced X-ray emission spectroscopy PIXE has been utilized for checking the compositional effect of Mn addition. Structural properties were analyzed using X-ray diffraction and diffractograms were analyzed using full profile Rietveld-type analysis with MAUD (Materials Analysis Using Diffraction) software. By using temperature-dependent synchrotron X-ray diffraction, the disorder–order phase transformation and the stability of the hard magnetic L10 phase were monitored over a large temperature range (50–800 °C). A large interval of structural stability of the L10 phase was observed and this stability was interpreted in terms of higher ordering of the L10 phase promoted by the Mn addition. It was moreover found that both crystal growth and unit cell expansion are inhibited, up to the highest temperature investigated (800 °C), proving thus that the Mn addition stabilizes the formed L10 structure further. Magnetic hysteresis loops confirmed structural data, revealing a strong coercive field for a sample wherein single phase, hard, magnetic tetragonal L10 exists. These findings open good perspectives for use as nanocomposite, rare earth free magnets, working in extreme operation conditions.


2012 ◽  
Vol 512-515 ◽  
pp. 158-161 ◽  
Author(s):  
Ling Dai ◽  
Qiang Xu ◽  
Shi Zhen Zhu ◽  
Ling Liu

As a new candidate material for the ceramic layer in thermal barrier coatings (TBCs) system, La3NbO7 was synthesized with La2O3 powder and Nb2O5 powder by solid state reaction. The stating powders with a mole ratio of La to Nb of 3:1 were mixed and then the mixture was calcined under the different temperatures(800°C, 1000°C, 1200°C) and dwell times(2h, 6h, 10h). The phase structure of the powder was observed by X–ray diffraction(XRD), and the microstructure of the sample was observed by scanning electron microscope(SEM). The effect of calcination temperature and dwell Time on the phase formation were examined. The results indicate that the La3NbO7 powder with single phase can be synthesized successfully at 1200°C for 10h in air, and the La3NbOsub>7 powders synthesized have an ultra-fine particle size of 0.5˜1µm with a granular particle shape. With the temperature increasing, LaNbO4/sub> was synthesized firstly and then La3NbO7 was synthesized with a mole ratio of La2O3 to LaNbO4 of 1:1.


2011 ◽  
Vol 412 ◽  
pp. 263-266
Author(s):  
Hong Wei Zhang ◽  
Li Li Zhang ◽  
Feng Rui Zhai ◽  
Jia Jin Tian ◽  
Can Bang Zhang

The higher mechanical strength of Al87Ce3Ni8.5Mn1.5 nanophase amorphous composites has been obtained with two methods. The first nanophase amorphous composites are directly produced by the single roller spin quenching technology. The method taken for the second nanophase amorphous composites is at first to obtain amorphous single-phase alloy, followed by annealed at different temperatures .The formative condition, the microstructure, the particle size, the volume fraction of α-Al phase and microhardness of nanophase amorphous composites etc have been investigated and compared by X-ray diffraction (XRD) and transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The microstructure of composites produced by the second method is higher than the former, the fabricated material structure of the system is more uniform and the process is easier to control.


2007 ◽  
Vol 21 (06) ◽  
pp. 931-945 ◽  
Author(s):  
K. SAMBASIVA RAO ◽  
P. MURALI KRISHNA ◽  
D. MADHAVA PRASAD ◽  
JOON HYUNG LEE

Ferroelectric, hysteresis, impedance spectroscopy parameters, AC conductivity, and piezoelectric properties in the ceramics of Pb 0.74 K 0.52 Nb 2 O 6 and Pb 0.74 K 0.13 Sm 0.13 Nb 2 O 6 have been studied. X-ray diffraction study reveals single phase with the orthorhombic structure. The samples were characterized for ferroelectric and impedance spectroscopy properties from room temperature to 600°C. Cole–Cole plots (Z″ versus Z′) are drawn at different temperatures. The results obtained are analyzed to understand the conductivity mechanism in both the samples. The piezoelectric constant d33 has been found to be 96 × 10-12 C/N in PKN.


Author(s):  
Nazia Khatun ◽  
Mohammad Sajjad Hossain ◽  
Most. Hosney Ara Begum ◽  
Suravi Islam ◽  
Nazmul Islam Tanvir ◽  
...  

Spinel ferrite Ni[Formula: see text]Mn[Formula: see text]Zn[Formula: see text]Fe2O4 was prepared by a conventional ceramic process followed by sintering at three different temperatures (1050[Formula: see text]C, 1100[Formula: see text]C and 1150[Formula: see text]C). X-ray diffraction (XRD) investigations stated the single-phase cubic spinel structure and the FTIR spectra revealed two prominent bands within the wavenumber region from 600 cm[Formula: see text] to 400 cm[Formula: see text]. Surface morphology showed highly crystalline grain development with sizes ranging from 0.27 [Formula: see text]m to 0.88 [Formula: see text]m. The magnetic hysteresis curve at ambient temperature revealed a significant effect of sintering temperature on both coercivity ([Formula: see text] and saturation magnetization ([Formula: see text]. Temperature caused a decrease in DC electrical resistivity, while the electron transport increased, suggesting the semiconducting nature of all samples and that they well followed the Arrhenius law from which their activation energies were determined. The values of Curie temperature ([Formula: see text] and activation energy were influenced by the sintering temperature. Frequency-dependent dielectric behavior (100 Hz–1 MHz) was also analyzed, which may be interpreted by the Maxwell–Wagner-type polarization. The UV–vis–NIR reflectance curve was analyzed to calculate the bandgap of ferrites, which showed a decreasing trend with increasing sintering temperature.


2019 ◽  
Vol 3 (1) ◽  
pp. 42-49
Author(s):  
I Gusti Agung Putra Adnyana ◽  
Komang Ngurah Suarbawa ◽  
Wisnu Ari Adi ◽  
Ni Nyoman Susi Kesuma Wardani ◽  
Laura Laudensia Senly Jalut

Synthesis and characterization of Ba1-xLaxFe12O19 based permanent magnet samples with variations in composition (x = 0; 0.02; 0.04; and 0.08) has been done. The method used is a solid state reaction. The phase formation of the sample Ba1-xLaxFe12O19 was carried out at 1200oC for 2 hours. The results of the X-ray diffraction pattern analysis show that all sample compositions have a single phase BaFe12O19. The results of magnetic properties testing using VSM showed that the best coercivity field and remanent magnetization values were obtained at the composition of x = 0.04. The effect of substitution of lanthanum into the barium atom can increase the number of magnetic domains which are indicated by the increase in the coercivity value of the material along with the increasing composition of x. It was concluded that the composition of Ba1-xLaxFe12O19 is a permanent magnet with the best product energy.


2021 ◽  
Vol 2129 (1) ◽  
pp. 012054
Author(s):  
Siti Nur Hazwani Yunus ◽  
Khor Shing Fhan ◽  
Banjuraizah Johar ◽  
Nur Maizatul Shima Adzali ◽  
Nur Hazlinda Jakfar ◽  
...  

Abstract In this paper, tricalcium disilicate was formed from dicalcium silicate compound powder, synthesised via a mechanochemical technique using a stoichiometric 2CaO:1SiO2. Compound CaO and SiO2 were derived from the bio-waste of eggshell and rice husk at the calcination temperature of 900°C and 800°C, respectively. The dicalcium disilicate powder was sintered for 2 hours at different temperatures ranging from 1150°C to 1350°C. Using X-ray diffraction with Rietveld analysis, it was found that the amount of tricalcium disilicate with monoclinic (beta) crystal structure increases on sintering temperature at the expense of dicalcium silicate. The complete formation of single-phase tricalcium disilicate began at a sintering temperature of 1300°C. The effect of sintering temperatures on the crystallisation and phase transition of dicalcium silicate is reported. The size of crystallites depends on the sintering temperature. The finding of this study rebound to the benefit of society by reducing the risk-off pollution cause by accessive redundant bio-waste eggshell and rice husk and also reduced the amount of CaO and SiO2 used in the fabrication of Ca3Si2O7.


2013 ◽  
Vol 446-447 ◽  
pp. 68-72
Author(s):  
Ahmad Amirabadizadeh ◽  
Zobedeh Momeni Larimi ◽  
Saeideh Eghbali

Nanocrystalline Ga doped nickel ferrite [(NiFe2-xGaxO4 (x=0.0, 0.1, 0.3, 0.5 and 0.7)] powders have been synthesized by sol-gel auto-ignition method and the effect of non-magnetic gadillum content on the nanosize particles and magnetic properties has been studied. The X-ray diffraction (XRD) revealed that the powders obtained are single phase with spinel structure. The calculated grain size from XRD data have been verified using transmission electron microscopy (TEM). TEM photograph shows that the powders consist of nanometer sized grain. The size of nanoparticles decreases as the non magnetic Ga content increases. Magnetic hysteresis loops were measured at room temperature with maximum applied magnetic field of 20 KOe. As Ga content increases, the measured magnetic hysteresis curves became border and saturation magnetization (MS) increased up to x= 0.3 and further increase of x leads the magnetization to decrease. The results are explained according to the assumed cation distribution.


2003 ◽  
Vol 18 (6) ◽  
pp. 1301-1308 ◽  
Author(s):  
G. D. C. Csete de Györgyfalva ◽  
I. M. Reaney

Thermal analysis and x-ray diffraction have confirmed that single-phase, cubic-spinel-structured NiMn2O4 (2:1 Mn2O3:NiO) begins to decompose into a rocksalt and a second spinel-structured phase above 907 °C. The decomposition product in samples air-quenched from 900 and 1200 °C was therefore investigated using transmission electron microscopy. Samples quenched from 900 °C (below decomposition temperature) did not show the expected single-phase microstructure, but instead grains contained nanoregions of a lenticular fringe contrast. Samples quenched from 1050 to 1200 °C were generally composed of Mn-rich spinel grains in addition to grains containing Mn-rich spinel precipitates (30–50 nm) surrounded by a Ni-rich rocksalt matrix. As temperature increased, the spinel grains and precipitates became clearly tetragonal, exhibiting a ferroelastic domain structure arising from a cooperative Jahn–Teller distortion. A decomposition mechanism based on the degree of inversion is proposed to explain these microstructures. Slow cooling samples from 1250 °C resulted in partial recomposition, leading to a microstructure principally composed of cubic spinel and regions of much smaller spinel structured precipitates (50–120 nm) in a rocksalt structured matrix. The slow-cooled samples showed a larger increase in resistance over time than single-phase samples did when held at 400 °C. X-ray diffraction measurements carried out before and after electrical characterization showed a reduction in the amount of rocksalt structured material present in slow-cooled samples.


Sign in / Sign up

Export Citation Format

Share Document