scholarly journals Changes in Characteristics of Rapidly Intensifying Western North Pacific Tropical Cyclones Related to Climate Regime Shifts

2018 ◽  
Vol 31 (19) ◽  
pp. 8163-8179 ◽  
Author(s):  
Haikun Zhao ◽  
Xingyi Duan ◽  
G. B. Raga ◽  
Philip J. Klotzbach

A significant increase in the proportion of tropical cyclones undergoing rapid intensification at least once during their lifetime (RITCs) over the western North Pacific (WNP) is observed since 1998 when an abrupt climate regime shift occurred. Changes of large-scale atmospheric and oceanic conditions affecting TC activity are compared between two subperiods: one before and one since 1998. Results suggest that both a significant decrease in the number of TCs and a nearly unchanged number of RITCs since 1998 caused a significant increase in the frequency of RITCs. The decrease in TC numbers is likely driven by considerably increased vertical wind shear and decreased low-level vorticity. In contrast, the unchanged RITC counts and thus increased ratio of RITCs during the recent decades are largely attributed to the dominance of a more conducive ocean environment with increased TC heat potential and warmer sea surface temperature anomalies. These associated decadal changes are closely associated with the recent climate regime shift. During the recent decades with a mega–La Niña–like pattern, stronger easterly trade winds have caused increased vertical wind shear and a weakened monsoon trough, thus hampering TC formation ability over the WNP. In addition, a steeper thermocline slope that hampered the eastward migration of warm water along the equatorial Pacific has generated a more favorable thermodynamic environment supporting TC rapid intensification over the WNP.

2018 ◽  
Vol 146 (11) ◽  
pp. 3773-3800 ◽  
Author(s):  
David R. Ryglicki ◽  
Joshua H. Cossuth ◽  
Daniel Hodyss ◽  
James D. Doyle

Abstract A satellite-based investigation is performed of a class of tropical cyclones (TCs) that unexpectedly undergo rapid intensification (RI) in moderate vertical wind shear between 5 and 10 m s−1 calculated as 200–850-hPa shear. This study makes use of both infrared (IR; 11 μm) and water vapor (WV; 6.5 μm) geostationary satellite data, the Statistical Hurricane Prediction Intensity System (SHIPS), and model reanalyses to highlight commonalities of the six TCs. The commonalities serve as predictive guides for forecasters and common features that can be used to constrain and verify idealized modeling studies. Each of the TCs exhibits a convective cloud structure that is identified as a tilt-modulated convective asymmetry (TCA). These TCAs share similar shapes, upshear-relative positions, and IR cloud-top temperatures (below −70°C). They pulse over the core of the TC with a periodicity of between 4 and 8 h. Using WV satellite imagery, two additional features identified are asymmetric warming/drying upshear of the TC relative to downshear, as well as radially thin arc-shaped clouds on the upshear side. The WV brightness temperatures of these arcs are between −40° and −60°C. All of the TCs are sheared by upper-level anticyclones, which limits the strongest environmental winds to near the tropopause.


2015 ◽  
Vol 28 (9) ◽  
pp. 3806-3820 ◽  
Author(s):  
Xidong Wang ◽  
Chunzai Wang ◽  
Liping Zhang ◽  
Xin Wang

Abstract This study investigates the variation of tropical cyclone (TC) rapid intensification (RI) in the western North Pacific (WNP) and its relationship with large-scale climate variability. RI events have exhibited strikingly multidecadal variability. During the warm (cold) phase of the Pacific decadal oscillation (PDO), the annual RI number is generally lower (higher) and the average location of RI occurrence tends to shift southeastward (northwestward). The multidecadal variations of RI are associated with the variations of large-scale ocean and atmosphere variables such as sea surface temperature (SST), tropical cyclone heat potential (TCHP), relative humidity (RHUM), and vertical wind shear (VWS). It is shown that their variations on multidecadal time scales depend on the evolution of the PDO phase. The easterly trade wind is strengthened during the cold PDO phase at low levels, which tends to make equatorial warm water spread northward into the main RI region rsulting from meridional ocean advection associated with Ekman transport. Simultaneously, an anticyclonic wind anomaly is formed in the subtropical gyre of the WNP. This therefore may deepen the depth of the 26°C isotherm and directly increase TCHP over the main RI region. These thermodynamic effects associated with the cold PDO phase greatly support RI occurrence. The reverse is true during the warm PDO phase. The results also indicate that the VWS variability in the low wind shear zone along the monsoon trough may not be critical for the multidecadal modulation of RI events.


2018 ◽  
Vol 146 (11) ◽  
pp. 3801-3825 ◽  
Author(s):  
David R. Ryglicki ◽  
James D. Doyle ◽  
Yi Jin ◽  
Daniel Hodyss ◽  
Joshua H. Cossuth

Abstract We investigate a class of tropical cyclones (TCs) that undergo rapid intensification (RI) in moderate vertical wind shear through analysis of a series of idealized model simulations. Two key findings derived from observational analysis are that the average 200–850-hPa shear value is 7.5 m s−1 and that the TCs displayed coherent cloud structures, deemed tilt-modulated convective asymmetries (TCA), which feature pulses of deep convection with periods of between 4 and 8 h. Additionally, all of the TCs are embedded in an environment that is characterized by shear associated with anticyclones, a factor that limits depth of the strongest environmental winds in the vertical. The idealized TC develops in the presence of relatively shallow environmental wind shear of an anticyclone. An analysis of the TC tilt in the vertical demonstrates that the source of the observed 4–8-h periodicity of the TCAs can be explained by smaller-scale nutations of the tilt on the longer, slower upshear precession. When the environmental wind shear occurs over a deeper layer similar to that of a trough, the TC does not develop. The TCAs are characterized as collections of updrafts that are buoyant throughout the depth of the TC since they rise into a cold anomaly caused by the tilting vortex. At 90 h into the simulation, RI occurs, and the tilt nutations (and hence the TCAs) cease to occur.


2015 ◽  
Vol 143 (9) ◽  
pp. 3434-3453 ◽  
Author(s):  
Yuqing Wang ◽  
Yunjie Rao ◽  
Zhe-Min Tan ◽  
Daria Schönemann

Abstract The effect of vertical wind shear (VWS) between different pressure levels on TC intensity change is statistically analyzed based on the best track data of tropical cyclones (TCs) in the western North Pacific (WNP) from the Joint Typhoon Warning Center (JTWC) and the ECMWF interim reanalysis (ERA-Interim) data during 1981–2013. Results show that the commonly used VWS measure between 200 and 850 hPa is less representative of the attenuating deep-layer shear effect than that between 300 and 1000 hPa. Moreover, the authors find that the low-level shear between 850 (or 700) and 1000 hPa is more negatively correlated with TC intensity change than any deep-layer shear during the active typhoon season, whereas deep-layer shear turns out to be more influential than low-level shear during the remaining less active seasons. Further analysis covering all seasons exhibits that a TC has a better chance to intensify than to decay when the deep-layer shear is lower than 7–9 m s−1 and the low-level shear is below 2.5 m s−1. The probability for TCs to intensify and undergo rapid intensification (RI) increases with decreasing VWS and increasing sea surface temperature (SST). TCs moving at slow translational speeds (less than 3 m s−1) intensify under relatively weaker VWS than TCs moving at intermediate translational speeds (3–8 m s−1). The probability of RI becomes lower than that of rapid decaying (RD) when the translational speed is larger than 8 m s−1. Most TCs tend to decay when the translational speed is larger than 12 m s−1 regardless of the shear condition.


2015 ◽  
Vol 144 (1) ◽  
pp. 225-239 ◽  
Author(s):  
Stephanie N. Stevenson ◽  
Kristen L. Corbosiero ◽  
Sergio F. Abarca

Abstract As global lightning detection has become more reliable, many studies have analyzed the characteristics of lightning in tropical cyclones (TCs); however, very few studies have examined flashes in eastern North Pacific (ENP) basin TCs. This study uses lightning detected by the World Wide Lightning Location Network (WWLLN) to explore the relationship between lightning and sea surface temperatures (SSTs), the diurnal cycle, the storm motion and vertical wind shear vectors, and the 24-h intensity change in ENP TCs during 2006–14. The results are compared to storms in the North Atlantic (NA). Higher flash counts were found over warmer SSTs, with 28°–30°C SSTs experiencing the highest 6-hourly flash counts. Most TC lightning flashes occurred at night and during the early morning hours, with minimal activity after local noon. The ENP peak (0800 LST) was slightly earlier than the NA (0900–1100 LST). Despite similar storm motion directions and differing vertical wind shear directions in the two basins, shear dominated the overall azimuthal lightning distribution. Lightning was most often observed downshear left in the inner core (0–100 km) and downshear right in the outer rainbands (100–300 km). A caveat to these relationships were fast-moving ENP TCs with opposing shear and motion vectors, in which lightning peaked downmotion (upshear) instead. Finally, similar to previous studies, higher flash densities in the inner core (outer rainbands) were associated with nonintensifying (intensifying) TCs. This last result constitutes further evidence in the efforts to associate lightning activity to TC intensity forecasting.


2020 ◽  
Vol 148 (11) ◽  
pp. 4415-4434
Author(s):  
Shu-Jeng Lin ◽  
Kun-Hsuan Chou

AbstractThis study examines the characteristics of tropical cyclone (TC) lightning distribution and its relationship with TC intensity and environmental vertical wind shear (VWS) over the western North Pacific. It uses data from the World Wide Lightning Location Network and operational global analysis data from National Centers for Environmental Prediction Final Analysis for 230 TCs during 2005–17. The spatial distribution of TC lightning frequency and normalized lightning rate demonstrates that the VWS dominates the azimuthal distribution of the lightning. The flashes are active in the downshear-left side of the inner core and the downshear-right side of the outer region. TC lightning distribution for various VWS strengths and TC intensities are further investigated. As VWS increases, the flashes of lightning become more asymmetric and exhibit a higher proportion at the outer region of the downshear side. Moreover, the same features occur as TC intensity decreases. A series of composite analyses indicated that stronger TCs with weaker VWS exhibit a more compact and symmetric lightning distribution, whereas weaker TCs with stronger VWS have a more asymmetric lightning distribution. Furthermore, the TC lightning distribution and its association with TC intensity changes are also examined for three lead times. Results show that among the composite analyses of five TC intensity changes, the lightning distribution for rapid intensification type exhibits more inner-core lightning and is more axisymmetric than the distributions for other categories. These features result from favorable environmental conditions comprising greater upper-level divergence, sea surface temperature, maximum potential intensity, and weaker vertical wind shear.


2013 ◽  
Vol 26 (8) ◽  
pp. 2614-2630 ◽  
Author(s):  
Kin Sik Liu ◽  
Johnny C. L. Chan

Abstract Tropical cyclone (TC) activity over the western North Pacific (WNP) exhibits a significant interdecadal variation during 1960–2011, with two distinct active and inactive periods each. This study examines changes in TC activity and atmospheric conditions in the recent inactive period (1998–2011). The overall TC activity shows a significant decrease, which is partly related to the decadal variation of TC genesis frequency in the southeastern part of the WNP and the downward trend of TC genesis frequency in the main development region. The investigation on the factors responsible for the low TC activity mainly focuses on the effect of vertical wind shear and subtropical high on multidecadal time scales. A vertical wind shear index, defined as the mean magnitude of the difference of the 200- and 850-hPa horizontal zonal winds (10°–17.5°N, 150°E–180°) averaged between June and October, is highly correlated with the annual TC number and shows a significant interdecadal variation. Positive anomalies of vertical wind shear are generally found in the eastern part of the tropical WNP during this inactive period. A subtropical high area index, calculated as the area enclosed by the 5880-gpm line of the June–October 500-hPa geopotential height (0°–40°N, 100°E–180°), shows a significant upward trend. A high correlation is also found between this index and the annual TC number, and a stronger-than-normal subtropical high is generally observed during this inactive period. The strong vertical wind shear and strong subtropical high observed during 1998–2011 together apparently lead to unfavorable atmospheric conditions for TC genesis and hence the low TC activity during the period.


Sign in / Sign up

Export Citation Format

Share Document