scholarly journals Ultrastructure expansion microscopy in Trypanosoma brucei

Open Biology ◽  
2021 ◽  
Vol 11 (10) ◽  
Author(s):  
Ana Kalichava ◽  
Torsten Ochsenreiter

The recently developed ultrastructure expansion microscopy (U-ExM) technique allows us to increase the spatial resolution within a cell or tissue for microscopic imaging through the physical expansion of the sample. In this study, we validate the use of U-ExM in Trypanosoma brucei measuring the expansion factors of several different compartments/organelles and thus verify the isotropic expansion of the cell. We furthermore demonstrate the use of this sample preparation protocol for future studies by visualizing the nucleus and kDNA, as well as proteins of the cytoskeleton, the basal body, the mitochondrion and the endoplasmic reticulum. Lastly, we discuss the challenges and opportunities of U-ExM.

2004 ◽  
Vol 165 (3) ◽  
pp. 313-321 ◽  
Author(s):  
Cynthia Y. He ◽  
Helen H. Ho ◽  
Joerg Malsam ◽  
Cecile Chalouni ◽  
Christopher M. West ◽  
...  

Duplication of the single Golgi apparatus in the protozoan parasite Trypanosoma brucei has been followed by tagging a putative Golgi enzyme and a matrix protein with variants of GFP. Video microscopy shows that the new Golgi appears de novo, near to the old Golgi, about two hours into the cell cycle and grows over a two-hour period until it is the same size as the old Golgi. Duplication of the endoplasmic reticulum (ER) export site follows exactly the same time course. Photobleaching experiments show that the new Golgi is not the exclusive product of the new ER export site. Rather, it is supplied, at least in part, by material directly from the old Golgi. Pharmacological experiments show that the site of the new Golgi and ER export is determined by the location of the new basal body.


Author(s):  
Vitalii Kryvenko ◽  
Olga Vagin ◽  
Laura A. Dada ◽  
Jacob I. Sznajder ◽  
István Vadász

Abstract The Na,K-ATPase establishes the electrochemical gradient of cells by driving an active exchange of Na+ and K+ ions while consuming ATP. The minimal functional transporter consists of a catalytic α-subunit and a β-subunit with chaperon activity. The Na,K-ATPase also functions as a cell adhesion molecule and participates in various intracellular signaling pathways. The maturation and trafficking of the Na,K-ATPase include co- and post-translational processing of the enzyme in the endoplasmic reticulum (ER) and the Golgi apparatus and subsequent delivery to the plasma membrane (PM). The ER folding of the enzyme is considered as the rate-limiting step in the membrane delivery of the protein. It has been demonstrated that only assembled Na,K-ATPase α:β-complexes may exit the organelle, whereas unassembled, misfolded or unfolded subunits are retained in the ER and are subsequently degraded. Loss of function of the Na,K-ATPase has been associated with lung, heart, kidney and neurological disorders. Recently, it has been shown that ER dysfunction, in particular, alterations in the homeostasis of the organelle, as well as impaired ER-resident chaperone activity may impede folding of Na,K-ATPase subunits, thus decreasing the abundance and function of the enzyme at the PM. Here, we summarize our current understanding on maturation and subsequent processing of the Na,K-ATPase in the ER under physiological and pathophysiological conditions. Graphic Abstract


2008 ◽  
Vol 181 (3) ◽  
pp. 431-438 ◽  
Author(s):  
Christopher L. de Graffenried ◽  
Helen H. Ho ◽  
Graham Warren

A bilobed structure marked by TbCentrin2 regulates Golgi duplication in the protozoan parasite Trypanosoma brucei. This structure must itself duplicate during the cell cycle for Golgi inheritance to proceed normally. We show here that duplication of the bilobed structure is dependent on the single polo-like kinase (PLK) homologue in T. brucei (TbPLK). Depletion of TbPLK leads to malformed bilobed structures, which is consistent with an inhibition of duplication and an increase in the number of dispersed Golgi structures with associated endoplasmic reticulum exit sites. These data suggest that the bilobe may act as a scaffold for the controlled assembly of the duplicating Golgi.


1991 ◽  
Vol 266 (7) ◽  
pp. 4322-4328 ◽  
Author(s):  
P Moreau ◽  
M Rodriguez ◽  
C Cassagne ◽  
D M Morré ◽  
D J Morré

1998 ◽  
Vol 143 (4) ◽  
pp. 921-933 ◽  
Author(s):  
Susana Silberstein ◽  
Gabriel Schlenstedt ◽  
Pam A. Silver ◽  
Reid Gilmore

Members of the eukaryotic heat shock protein 70 family (Hsp70s) are regulated by protein cofactors that contain domains homologous to bacterial DnaJ. Of the three DnaJ homologues in the yeast rough endoplasmic reticulum (RER; Scj1p, Sec63p, and Jem1p), Scj1p is most closely related to DnaJ, hence it is a probable cofactor for Kar2p, the major Hsp70 in the yeast RER. However, the physiological role of Scj1p has remained obscure due to the lack of an obvious defect in Kar2p-mediated pathways in scj1 null mutants. Here, we show that the Δscj1 mutant is hypersensitive to tunicamycin or mutations that reduce N-linked glycosylation of proteins. Although maturation of glycosylated carboxypeptidase Y occurs with wild-type kinetics in Δscj1 cells, the transport rate for an unglycosylated mutant carboxypeptidase Y (CPY) is markedly reduced. Loss of Scj1p induces the unfolded protein response pathway, and results in a cell wall defect when combined with an oligosaccharyltransferase mutation. The combined loss of both Scj1p and Jem1p exaggerates the sensitivity to hypoglycosylation stress, leads to further induction of the unfolded protein response pathway, and drastically delays maturation of an unglycosylated reporter protein in the RER. We propose that the major role for Scj1p is to cooperate with Kar2p to mediate maturation of proteins in the RER lumen.


2017 ◽  
Vol 112 ◽  
pp. 199
Author(s):  
Mutay Aslan ◽  
Ebru Kirac ◽  
Ozlem Yılmaz ◽  
Esma Kirimlioglu Konuk ◽  
Filiz Ozcan

1985 ◽  
Vol 100 (6) ◽  
pp. 1922-1929 ◽  
Author(s):  
B F McEwen ◽  
W J Arion

Pathogenic staphylococci secrete a number of exotoxins, including alpha-toxin. alpha-Toxin induces lysis of erythrocytes and liposomes when its 3S protein monomers associate with the lipid bilayer and form a hexomeric transmembrane channel 3 nm in diameter. We have used alpha-toxin to render rat hepatocytes 93-100% permeable to trypan blue with a lactate dehydrogenase leakage less than or equal to 22%. Treatment conditions included incubation for 5-10 min at 37 degrees C and pH 7.0 with an alpha-toxin concentration of 4-35 human hemolytic U/ml and a cell concentration of 13-21 mg dry wt/ml. Scanning electron microscopy revealed signs of swelling in the treated hepatocytes, but there were no large lesions or gross damage to the cell surface. Transmission electron microscopy indicated that the nucleus, mitochondria, and cytoplasm were similar in control and treated cells and both had large regions of well-defined lamellar rough endoplasmic reticulum. Comparisons of the mannose-6-phosphatase and glucose-6-phosphatase activities demonstrated that 5-10 U/ml alpha-toxin rendered cells freely permeable to glucose-6-phosphate, while substantially preserving the selective permeability of the membranes of the endoplasmic reticulum and the functionality of the glucose-6-phosphatase system. Thus, alpha-toxin appears to have significant potential as a means to induce selective permeability to small ions. It should make possible the study of a variety of cellular functions in situ.


Author(s):  
Agnese De Mario ◽  
Chiara Scarlatti ◽  
Veronica Costiniti ◽  
Simona Primerano ◽  
Raffaele Lopreiato ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document