scholarly journals Diaphragm Ultrasound in the Evaluation of Diaphragmatic Dysfunction in Lung Disease

2021 ◽  
Vol 15 (1) ◽  
pp. 82-87
Author(s):  
Sebastián Lux ◽  
Daniel Ramos ◽  
Andrés Pinto ◽  
Sara Schilling ◽  
Mauricio Salinas

The diaphragm is the most important respiratory muscle, and its function may be limited by acute and chronic diseases. A diaphragmatic ultrasound, which quantifies dysfunction through different approaches, is useful in evaluating work of breathing and diaphragm atrophy, predicting successful weaning, and diagnosing critically ill patients. This technique has been used to determine reduced diaphragmatic function in patients with chronic obstructive pulmonary disease and interstitial diseases, while in those with COVID-19, diaphragmatic ultrasound has been used to predict weaning failure from mechanical ventilation.

2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Samiaa H. Sadek ◽  
Maha M. El-kholy ◽  
Marwa S. Abdulmoez ◽  
Reham M. El-Morshedy

Abstract Background Patient-ventilator asynchrony is a common problem in mechanically ventilated patients. It is associated with adverse effects including increased work of breathing, patient discomfort, increased need for sedation, prolonged mechanical ventilation, weaning difficulties, and weaning failure. The purpose of the present was to describe patient-ventilator asynchrony and its impact on weaning outcomes in mechanically ventilated chronic obstructive pulmonary disease (COPD) patients. Results One hundred mechanically ventilated COPD patients were enrolled in this prospective study. Weaning failure (need of NIV or reintubation within 48 h) was noticed in 27 (27%) patients while 73 (73%) patients had successful weaning. Patients with failed weaning had significantly higher asynchrony index (A.I) and ineffective trigger index (ITI) in comparison with those with successful weaning (7.69 ± 3.71, 3.46 ± 2.59 versus 6.27 ± 3.14, 2.47 ± 2.08, respectively; P value< 0.04). Data were expressed as mean ± standard deviation. Conclusion High asynchrony index and high ineffective trigger index may be early predictors of weaning failure in mechanically ventilated COPD patients.


2019 ◽  
Vol 7 (01) ◽  
pp. 28
Author(s):  
Nury Nusdwinuringtyas ◽  
Siti Chandra Widjanantie

Introduction: Chronic Obstructive Pulmonary Disease (COPD) was characteristic by the inflammatory process in the airway which causes air trapping and hyperinflation, then followed by decreasing the respiratory muscle strength. Breathing training using the positive expiratory pressure (PEP) increasing respiratory muscle strength.Methods: A case presentation of a male, age was 60 years old diagnosed as COPD by The Global Initiative for Chronic Obstructive Lung Disease (GOLD) grade 4 group D, and Chronic Heart Failure (CHF) grade II, with complication of excessive phlegm, underweight, and weakness of respiratory muscle, have PEP for 8 weeks.Results: Spirometry evaluation before and after eight week of PEP have found; FEV1 22.12 and 22.42%, FVC 34.24 and 56%, FEV1/FVC 76.8 and 64%. Respiratory muscle strength before and after PEP showed the Muscle Inspiratory Pressure (MIP) 46 and 71 cmH2O, Muscle Expiratory Pressure (MEP) 48 and 104 cmH2O.The values of Six Minute Walk Test (6MWT) evaluation by BORG modified scale before and after PEP were 11 and 13 ( efforts), 2 and 3 (dyspnea), 0 and 1 (Leg Fatigue). The six-minute walking distance (6MWD) before and after PED were 170 and 190 m, equation reference with Nury’s formula showed percentage prediction before and after PEP respectively 29.2 and 32%, VO2Max; 4.96 and 6L, METs; 1.41 and 1.7. The St GeorgeRespiratory Questionnaire (SGRQ) before and after PEP were 20.6 and 49.5% (symptom), 86.6 and 45.1% (activity), 45.5 and 18.4% (impact) and 53.6 and 42% for total.Conclusion: Positive airway pressure exercise had beneficial effect on reducing air-trapping process in COPD and increasing the respiratory muscle strength for both expiratory and inspiratory muscle strength.Keywords: Chronic obstructive pulmonary disease, positive expiratory pressure device, respiratory muscle strength, six minutes walking distance


2020 ◽  
Vol 41 (06) ◽  
pp. 786-797
Author(s):  
Miquel Ferrer ◽  
Antoni Torres

AbstractNoninvasive ventilation (NIV) is considered to be the standard of care for the management of acute hypercapnic respiratory failure in patients with chronic obstructive pulmonary disease exacerbation. It can be delivered safely in any dedicated setting, from emergency rooms to high dependency or intensive care units and wards. NIV helps improving dyspnea and gas exchange, reduces the need for endotracheal intubation, and morbidity and mortality rates. It is therefore recognized as the gold standard in this condition. High-flow nasal therapy helps improving ventilatory efficiency and reducing the work of breathing in patients with severe chronic obstructive pulmonary disease. Early studies indicate that some patients with acute hypercapnic respiratory failure can be managed with high-flow nasal therapy, but more information is needed before specific recommendations for this therapy can be made. Therefore, high-flow nasal therapy use should be individualized in each particular situation and institution, taking into account resources, and local and personal experience with all respiratory support therapies.


2006 ◽  
Vol 34 (3) ◽  
pp. 240-246 ◽  
Author(s):  
J Chlumský ◽  
P Filipova ◽  
M Terl

Most patients with chronic obstructive pulmonary disease (COPD) have impaired respiratory muscle function. Maximal oesophageal pressure correlates closely with exercise tolerance and seems to predict the distance walked during the 6-min walk test. This study assessed the non-invasive parameters of respiratory muscle function in 41 patients with COPD to investigate their relationship to pulmonary function tests and exercise tolerance. The COPD patients, who demonstrated the full range of airway obstruction severity, had a mean forced expiratory volume in 1 s of 42.5% predicted (range, 20–79% predicted). Both the maximal inspiratory muscle strength and non-invasive tension-time index were significantly correlated with the degree of lung hyperinflation, as expressed by the ratio of residual volume to total lung capacity, and the distance walked in 6 min. We conclude that respiratory muscle function was influenced mainly by lung hyperinflation and that it had an important effect on exercise tolerance in COPD patients.


Sign in / Sign up

Export Citation Format

Share Document