Mechanical performance of glulam beam-to-column connections with coach screws as fasteners

2021 ◽  
Vol 21 (2) ◽  
Author(s):  
Minjuan He ◽  
Minmin Li ◽  
Zheng Li ◽  
Guirong He ◽  
Yongliang Sun
Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6494
Author(s):  
Mingfei Li ◽  
Mingtao Wu ◽  
Nan Guo ◽  
Lidan Mei ◽  
Yan Zhao

An anchorage device is an integral part of the prestressed Glulam beams. Therefore, its rationality and practicability have significant effects on the mechanical performance of the prestressed beams. To investigate the impact of the anchorage devices on the bearing capacity and stiffness of the prestressed beams, this paper compared and analyzed four kinds of anchors in detail through the finite element software. The results showed that when the initial mid-span deflection was 5 mm, 10 mm, and 15 mm, the bearing capacity of prestressed beams with four anchorage devices was 80.37–177.24%, 93.56–182.51%, and 95.62–194.60% higher than that of ordinary Glulam beam, respectively. When the initial mid-span top prestresses were 1 MPa, 1.5 MPa, and 2 MPa, the bearing capacity of prestressed beams with four anchorage devices was 101.71–172.57%, 105.85–175.88%, and 109.64–180.87% higher than that of ordinary Glulam beam, respectively. In addition, based on the simulation results, the prestressed beam with the external anchorage had the highest bearing capacity and stiffness. The deformation capacity of the beam with boot anchorage was the largest. The stress distribution of the beam installed under beam anchorage was the most uniform, and the beam with slotted anchorage was easy to cause stress concentration at the notch. Finally, based on the outstanding performance of the external anchorage, it was selected to carry out one experiment, and the experimental result showed that the simulation could predict the damage model and load–deflection relationship of the prestressed beams well.


2013 ◽  
Vol 778 ◽  
pp. 545-552 ◽  
Author(s):  
Cesar Echavarria ◽  
Beatriz Echavarría ◽  
Hernán Cañola

A research study was undertaken to investigate the mechanical performance of glulam beams reinforced by CFRP or bamboo. Local reinforcement is proposed in order to improve the flexural strength of glulam beams. The glulam beam is strengthened in tension and along its sides with the carbon fiber-reinforced polymer CFRP or bamboo. A series of CFRP reinforced glulam beams and bamboo reinforced glulam beams were tested to determine their load-deformation characteristics. Experimental work for evaluating the reinforcing technique is reported here. According to experiment results, the CFRP and bamboo reinforcements led to a higher glulam beam performance. The results show a considerably improved stiffness of the reinforced over the non-reinforced specimens. By using CFRP and bamboo reinforcements several improvements in strength may be obtained.


2019 ◽  
Author(s):  
Peter Peter ◽  
Claudia Creighton ◽  
David Fox ◽  
Pablo Mota Santiago ◽  
Adrian Hawley ◽  
...  

Author(s):  
Kulwant Singh ◽  
Gurbhinder Singh ◽  
Harmeet Singh

The weight reduction concept is most effective to reduce the emissions of greenhouse gases from vehicles, which also improves fuel efficiency. Amongst lightweight materials, magnesium alloys are attractive to the automotive sector as a structural material. Welding feasibility of magnesium alloys acts as an influential role in its usage for lightweight prospects. Friction stir welding (FSW) is an appropriate technique as compared to other welding techniques to join magnesium alloys. Field of friction stir welding is emerging in the current scenario. The friction stir welding technique has been selected to weld AZ91 magnesium alloys in the current research work. The microstructure and mechanical characteristics of the produced FSW butt joints have been investigated. Further, the influence of post welding heat treatment (at 260 °C for 1 h) on these properties has also been examined. Post welding heat treatment (PWHT) resulted in the improvement of the grain structure of weld zones which affected the mechanical performance of the joints. After heat treatment, the tensile strength and elongation of the joint increased by 12.6 % and 31.9 % respectively. It is proven that after PWHT, the microhardness of the stir zone reduced and a comparatively smoothened microhardness profile of the FSW joint obtained. No considerable variation in the location of the tensile fracture was witnessed after PWHT. The results show that the impact toughness of the weld joints further decreases after post welding heat treatment.


Author(s):  
Byung-Jae Kim ◽  
Hyeon-Seok Seo ◽  
Won-Ho Lee ◽  
Jong-Hyun Ahn ◽  
Youn-Jea Kim

Diabetes ◽  
1984 ◽  
Vol 33 (12) ◽  
pp. 1138-1143 ◽  
Author(s):  
B. H. Tan ◽  
G. L. Wilson ◽  
S. W. Schaffer

Sign in / Sign up

Export Citation Format

Share Document