jet injectors
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 8)

H-INDEX

13
(FIVE YEARS 1)

2022 ◽  
pp. 114109
Author(s):  
Jelle Schoppink ◽  
David Fernández Rivas
Keyword(s):  

2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Yunfei Wang ◽  
Long Yue ◽  
Lechuan Hu ◽  
Jing Wang

In order to study the injection and diffusion process of the drug in the subcutaneous tissue of a needle-free jet injectors (NFJIs) in detail and understand the influence of different nozzle geometry on the diffusion process of the drug, in this paper, numerical simulations were performed to study the diffusion process of the drug in the subcutaneous tissue of NFJIs with cylindrical nozzle. On this basis, the differences of the drug diffusion process with different nozzle geometries were analyzed. The results show that the drug diffused in the shape of ellipsoid in the subcutaneous tissue. The penetration of the drug into the subcutaneous tissue is deeper under the condition of conical nozzle and conical cylindrical nozzle at the same time. However, it takes longer to spread to the interface between skin and subcutaneous tissue in reverse.


2020 ◽  
Vol 3 (2) ◽  
pp. 2
Author(s):  
Claus Franz Wehmann ◽  
Marcello Reis ◽  
Meng Lou ◽  
Oskar Josef Haidn

As part of an effort to understand the conditions for the ignition of cryogenic propellants in the low pressure environment, we conducted a research of internal flow of cryogenic jet. In this paper, the experimental investigation was exerted focusing on the qualitative morphology study of the cryogenic flow inside the jet injectors. The test facilities were carefully designed and allow for visualization and characterization of the flow. The results show a strong dependence of mass flow rate on the fluid temperature. The two-phase flow was observed even for a long time chilling down of the injector. The Jacob number is proved to be a good indicator for the flow regimes, and the bubbles are present in the flow every time. The injector geometry has an influence on the flow rate, with the tapered injector demonstrating a higher flow rate than the sharp one.


2020 ◽  
Vol 45 (9) ◽  
pp. 1357-1365
Author(s):  
Feng‐Shan Wang ◽  
Jun Chen ◽  
Tao Zhang ◽  
Hao‐Sen Guan ◽  
Hong‐Meng Li

Author(s):  
Michele Schlich ◽  
Rosita Primavera ◽  
Francesco Lai ◽  
Chiara Sinico ◽  
Paolo Decuzzi

2019 ◽  
Vol 53 ◽  
pp. 101167 ◽  
Author(s):  
Pankaj Rohilla ◽  
Yatish S. Rane ◽  
Idera Lawal ◽  
Andrew Le Blanc ◽  
Justin Davis ◽  
...  

Author(s):  
Yue Ling ◽  
Weixiao Shang ◽  
Jun Chen

Abstract Impinging-jet injectors are commonly used in liquid propellant rocket engines. Two cylindrical liquid jets impinge at a certain angle and form a liquid sheet in the plane normal to the jets. When the Reynolds and Weber numbers are large, the liquid sheet becomes unstable and disintegrates into liquid ligaments and droplets. In the present study, we focus on cases with moderate injection velocities so that the liquid sheet remains unbroken. Detailed numerical simulations are performed using the adaptive multiphase flow solver, Basilisk. The volume-of-fluid method is used to resolve the gas-liquid interface. Grid-refinement studies are conducted to verify the formation of the liquid sheet is accurately captured in simulation. The numerical results are compared to the recent experimental measurement of the sheet thickness distribution by partial coherent interferometry and a good agreement is achieved.


2017 ◽  
Vol 50 (6) ◽  
pp. 1773-1781 ◽  
Author(s):  
Eike C. Schulz ◽  
Johannes Kaub ◽  
Frederik Busse ◽  
Pedram Mehrabi ◽  
Henrike M. Müller-Werkmeister ◽  
...  

In order to utilize the high repetition rates now available at X-ray free-electron laser sources for serial crystallography, methods must be developed to softly deliver large numbers of individual microcrystals at high repetition rates and high speeds. Picosecond infrared laser (PIRL) pulses, operating under desorption by impulsive vibrational excitation (DIVE) conditions, selectively excite the OH vibrational stretch of water to directly propel the excited volume at high speed with minimized heating effects, nucleation formation or cavitation-induced shock waves, leaving the analytes intact and undamaged. The soft nature and laser-based sampling flexibility provided by the technique make the PIRL system an interesting crystal delivery approach for serial crystallography. This paper demonstrates that protein crystals extracted directly from aqueous buffer solutionviaPIRL-DIVE ablation retain their diffractive properties and can be usefully exploited for structure determination at synchrotron sources. The remaining steps to implement the technology for high-speed serial femtosecond crystallography, such as single-crystal localization, high-speed sampling and synchronization, are described. This proof-of-principle experiment demonstrates the viability of a new laser-based high-speed crystal delivery system without the need for liquid-jet injectors or fixed-target mounting solutions.


2017 ◽  
Vol 11 (1) ◽  
Author(s):  
Prachya Mukda ◽  
Kulachate Pianthong ◽  
Wirapan Seehanam

Currently, most of commercial needle-free jet injectors generate the liquid jet by a method called “driving object method” (DOM); however, the reliability and efficiency are still questioned. This paper proposes a new concept of jet generation method, known as “impact driven method” (IDM). A prototype of an IDM jet injector is designed, built, tested, and compared to a commercial device (Cool.click, Tigard, OR). Fundamental characteristics, i.e., the exit jet velocity and impact pressure, are measured. Jet injection processes are visualized both in air and in 20% polyacrylamide by high speed photography. In this study, from the prototype of the IDM jet injector, a maximum jet velocity of 400 m/s and impact peak pressure of 68 MPa can be obtained. It is clear that the IDM jet injector provides a double pulsed liquid jet, which is a major advantage over the commercial jet injector. Because, the first pulse gives a shorter erosion stage, and then, immediately the second pulse follows and provides a better penetration, wider lateral dispersion, and considerably less back splash. Hence, lower pain level and higher delivery efficiency should be achieved. It can be concluded that the IDM concept is highly feasible for implementation in real applications, either for human or animal injection. However, the control and accuracy of IDM still needs to be carefully investigated.


Sign in / Sign up

Export Citation Format

Share Document