scholarly journals Sex influences the brain functional connectivity correlates of originality

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Richard B. Silberstein ◽  
David A. Camfield

AbstractCreative cognition is thought to involve two processes, the creation of new ideas and the selection and retention of suitable new ideas. Neuroimaging studies suggest that the Default Mode Network contributes to the creation of new ideas while left inferior frontal and parieto-temporal cortical networks mediate the selection/retention process. Higher levels of activity in the selection/retention have been shown to be associated with stricter criteria for selection and hence the expression of fewer novel ideas. In this study, we examined the brain functional connectivity correlates of an originality score while 27 males and 27 females performed a low and a high demand visual vigilance task. Brain functional connectivity was estimated from the steady state visual evoked potential event related partial coherence. In the male group, we observed a hypothesized left frontal functional connectivity that was negatively correlated with originality in both tasks. By contrast, in the female group no significant correlation between functional connectivity and originality was observed in either task. We interpret the findings to suggest that males and females engaged different functional networks when performing the vigilance tasks. We conclude with a consideration of the possible risks when data pooling across sex in studies of higher cortical function.

2021 ◽  
Author(s):  
Geisa B. Gallardo‐Moreno ◽  
Francisco J. Alvarado‐Rodríguez ◽  
Rebeca Romo‐Vázquez ◽  
Hugo Vélez‐Pérez ◽  
Andrés A. González‐Garrido

2021 ◽  
Author(s):  
Marcela Ovando-Tellez ◽  
Yoed Nissan Kenett ◽  
Mathias Benedek ◽  
Matthieu Bernard ◽  
Joan Belo ◽  
...  

Creative cognition relies on the ability to form remote associations between concepts, which allows to generate novel ideas or solve new problems. Such an ability is related to the organisation of semantic memory; yet whether real-life creative behaviour relies on semantic memory organisation and its neural substrates remains unclear. Therefore, this study explored associations between brain functional connectivity patterns, network properties of individual semantic memory, and real-life creativity. We acquired multi-echo functional MRI data while participants underwent a semantic relatedness judgment task. These ratings were used to estimate their individual semantic memory networks, whose properties significantly predicted their real-life creativity. Using a connectome-based predictive modelling approach, we identified patterns of task-based functional connectivity that predicted creativity-related semantic memory network properties. Furthermore, these properties mediated the relationship between functional connectivity and real-life creativity. These results provide new insights into how brain connectivity supports the associative mechanisms of creativity.


2020 ◽  
Vol 6 (2) ◽  
pp. 120-131
Author(s):  
Shangen Zhang ◽  
Jingnan Sun ◽  
Xiaorong Gao

In the fatigue state, the neural response characteristics of the brain might be different from those in the normal state. Brain functional connectivity analysis is an effective tool for distinguishing between different brain states. For example, comparative studies on the brain functional connectivity have the potential to reveal the functional differences in different mental states. The purpose of this study was to explore the relationship between human mental states and brain control abilities by analyzing the effect of fatigue on the brain response connectivity. In particular, the phase‐scrambling method was used to generate images with two noise levels, while the N‐back working memory task was used to induce the fatigue state in subjects. The paradigm of rapid serial visual presentation (RSVP) was used to present visual stimuli. The analysis of brain connections in the normal and fatigue states was conducted using the open‐source eConnectome toolbox. The results demonstrated that the control areas of neural responses were mainly distributed in the parietal region in both the normal and fatigue states. Compared to the normal state, the brain connectivity power in the parietal region was significantly weakened under the fatigue state, which indicates that the control ability of the brain is reduced in the fatigue state.


SLEEP ◽  
2020 ◽  
Vol 43 (12) ◽  
Author(s):  
Raphael Vallat ◽  
Alain Nicolas ◽  
Perrine Ruby

Abstract Why do some individuals recall dreams every day while others hardly ever recall one? We hypothesized that sleep inertia—the transient period following awakening associated with brain and cognitive alterations—could be a key mechanism to explain interindividual differences in dream recall at awakening. To test this hypothesis, we measured the brain functional connectivity (combined electroencephalography–functional magnetic resonance imaging) and cognition (memory and mental calculation) of high dream recallers (HR, n = 20) and low dream recallers (LR, n = 18) in the minutes following awakening from an early-afternoon nap. Resting-state scans were acquired just after or before a 2 min mental calculation task, before the nap, 5 min after awakening from the nap, and 25 min after awakening. A comic was presented to the participants before the nap with no explicit instructions to memorize it. Dream(s) and comic recall were collected after the first post-awakening scan. As expected, between-group contrasts of the functional connectivity at 5 min post-awakening revealed a pattern of enhanced connectivity in HR within the default mode network (DMN) and between regions of the DMN and regions involved in memory processes. At the behavioral level, a between-group difference was observed in dream recall, but not comic recall. Our results provide the first evidence that brain functional connectivity right after awakening is associated with interindividual trait differences in dream recall and suggest that the brain connectivity of HR at awakening facilitates the maintenance of the short-term memory of the dream during the sleep–wake transition.


Cephalalgia ◽  
2010 ◽  
Vol 30 (11) ◽  
pp. 1383-1391 ◽  
Author(s):  
Maria A Rocca ◽  
Paola Valsasina ◽  
Martina Absinta ◽  
Bruno Colombo ◽  
Valeria Barcella ◽  
...  

Introduction: In this study, we investigated whether abnormalities of the brain resting-state networks (RSNs) occur in patients with episodic cluster headache (CH), outside the attacks of the disease. Patients and methods: RS fMRI scans were acquired from 13 CH patients and 15 healthy controls. RS fMRI data were analyzed using both independent component analysis (ICA) and a seed correlation analysis, starting from the hypothalamus and the thalamus. Results: The seed correlation analysis revealed increased functional connectivity within the networks identified starting from the hypothalami and thalami in CH patients versus controls. ICA analysis detected 11 RSNs with potential functional relevance. Among these networks, CH patients had decreased fluctuations within the sensorimotor and the primary visual network compared to controls ( P-values 0.03–0.007). RSN abnormalities were significantly correlated with disease duration. Conclusions: In CH patients a diffuse abnormality of brain functional connectivity is present, which extends beyond the antinoceptive system.


Sign in / Sign up

Export Citation Format

Share Document