environmental filter
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 9)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Vol 9 ◽  
Author(s):  
Rafael M. Rabelo ◽  
Geanne C. N. Pereira ◽  
João Valsecchi ◽  
William E. Magnusson

Amazonian flooded (várzea) and upland (terra firme) forests harbor distinct assemblages of most taxonomic groups. These differences are mainly attributed to flooding, which may affect directly or indirectly the persistence of species. Here, we compare the abundance, richness and composition of butterfly assemblages in várzea and terra firme forests, and evaluate whether environmental gradients between and within these forest types can be used to predict patterns of assemblage structure. We found that both total abundance and number of species per plot are higher in várzea than in terra firme forests. Várzea assemblages had a higher dominance of abundant species than terra firme assemblages, in which butterfly abundances were more equitable. Rarefied species richness for várzea and terra firme forests was similar. There was a strong turnover in species composition from várzea to terra firme forests associated with environmental change between these forest types, but with little evidence for an effect of the environmental gradients within forest types. Despite a smaller total area in the Amazon basin, less defined vegetation strata and the shorter existence over geological time of floodplain forests, Nymphalid-butterfly assemblages were not more species-poor in várzea forests than in unflooded forests. We highlight the role of flooding as a primary environmental filter in Amazonian floodplain forests, which strongly determines the composition of butterfly assemblages.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kun Liu ◽  
Yang Liu ◽  
Zhilong Zhang ◽  
Shiting Zhang ◽  
Carol C. Baskin ◽  
...  

Seed germination requirements may determine the kinds of habitat in which plants can survive. We tested the hypothesis that nitrogen (N) addition can change seed germination trait-environmental filter interactions and ultimately redistribute seed germination traits in alpine meadows. We determined the role of N addition on germination trait selection in an alpine meadow after N addition by combining a 3-year N addition experiment in an alpine meadow and laboratory germination experiments. At the species level, germination percentage, germination rate (speed) and breadth of temperature niche for germination (BTN) were positively related to survival of a species in the fertilized community. In addition, community-weighted means of germination percentage, germination rate, germination response to alternating temperature and BTN increased. However, germination response to wet-cold storage (cold stratification) and functional richness of germination traits was lower in alpine meadows with high-nitrogen addition than in those with no, low and medium N addition. Thus, N addition had a significant influence on environmental filter-germination trait interactions and generated a different set of germination traits in the alpine meadow. Further, the effect of N addition on germination trait selection by environmental filters was amount-dependent. Low and medium levels of N addition had less effect on redistribution of germination traits than the high level.


Hydrobiologia ◽  
2021 ◽  
Vol 848 (8) ◽  
pp. 1881-1895
Author(s):  
Leidiane Pereira Diniz ◽  
Louizi de Souza Magalhães Braghin ◽  
Thays Sharllye Alves Pinheiro ◽  
Pedro Augusto Mendes de Castro Melo ◽  
Claudia Costa Bonecker ◽  
...  

2021 ◽  
Author(s):  
Jonathan Wesley Ferreira Ribeiro ◽  
Rafael Reis Gonçalo ◽  
Rosana Marta Kolb

2020 ◽  
Vol 13 (2) ◽  
pp. 185-194
Author(s):  
Alejandra Martínez-Blancas ◽  
Carlos Martorell

Abstract Aims Diversity in communities is determined by species’ ability to coexist with each other and to overcome environmental stress that may act as an environmental filter. Niche differentiation (ND) results in stronger intra- than interspecific competition and promotes coexistence. Because stress affects interactions, the strength of ND may change along stress gradients. A greater diversity of plant growth forms has been observed in stressful habitats, such as deserts and alpine regions, suggesting greater ND when stress is strong. We tested the hypothesis that niche differences and environmental filters become stronger with stress. Methods In a semiarid grassland in southern Mexico, we sowed six annual species in the field along a hydric stress gradient. Plants were grown alone (without interactions), with conspecific neighbors (intraspecific interactions) or with heterospecific neighbors (interspecific interactions). We analyzed how the ratio of intra- to interspecific competition changed along the gradient to assess how water availability determines the strength of ND. We also determined if hydric stress represented an environmental filter. Important Findings We observed stronger intra- than interspecific competition, especially where hydric stress was greater. Thus, we found ND in at least some portion of the gradient for all but one species. Some species were hindered by stress, but others were favored by it perhaps because it eliminates soil pathogens. Although strong ND was slightly more frequent with stress, our species sample was small and there were exceptions to the general pattern, so further research is needed to establish if this is a widespread phenomenon in nature.


2019 ◽  
Author(s):  
Hugo I. Martínez-Cabrera ◽  
Emilio Estrada-Ruiz

ABSTRACTCommunity assembly processes, environmental filtering and limiting similarity, determine functional traits values within communities. Because environment influences the number of viable functional strategies species might take, a strong effect of environmental filter often results in communities having species with similar trait values and narrow functional niches. On the other hand, limiting similarity lead to communities with broader functional spaces. The degree to community assembly processes influence wood trait variation has important implications for paleoclimate estimation using fossil wood since the main tenet of the approach is environmental driven trait convergence, and assumes a central role of environmental filtering. We used functional diversity (FD) to determine how three wood anatomical traits vary in 14 extant communities (272 species) growing under different climate regimes, and inferred the prevalence of environmental filtering/limiting similarity. We also calculated FD metrics for the El Cien Formation fossil woods and discussed the results in light of the current knowledge of the flora. We found lower anatomical diversity in communities growing in dry/cool places (smaller functional spaces and lower abundance of trait combinations), suggesting that strong wood anatomical trait convergence could be the result of stronger habitat filtering in these communities. A lower strength of environmental filter in warm/wet environments, likely results in an amplification of the role of other drivers that promote higher number of hydraulic strategies through niche partition in highly structured communities. More complex ecological structures in mild tropical places likely lead to a higher spread of wood trait values. This asymmetry in the strength of environmental filter along climate gradients, suggest that the imbalances in strength of the trait-climate convergence, should be incorporated in paleoclimate prediction models. FD approach can be used to recognize promising traits with narrow niches along climate gradients, and therefore a constant effect of environmental filter.


mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Kristin M. Rath ◽  
Arpita Maheshwari ◽  
Johannes Rousk

ABSTRACT The structure and function of microbial communities vary along environmental gradients; however, interlinking the two has been challenging. In this study, salinity was used as an environmental filter to study how it could shape trait distributions, community structures, and the resulting functions of soil microbes. The environmental filter was applied by salinizing nonsaline soil (0 to 22 mg NaCl g−1). Our targeted community trait distribution (salt tolerance) was determined with dose-response relationships between bacterial growth and salinity. The bacterial community structure responses were resolved with Illumina 16S rRNA gene amplicon sequencing, and the microbial functions determined were respiration and bacterial and fungal growth. Salt exposure quickly resulted in filtered trait distributions, and stronger filters resulted in larger shifts. The filtered trait distributions correlated well with community composition differences, suggesting that trait distribution shifts were driven at least partly by species turnover. While salt exposure decreased respiration, microbial growth responses appeared to be characterized by competitive interactions. Fungal growth was highest when bacterial growth was inhibited by the highest salinity, and it was lowest when the bacterial growth rate peaked at intermediate salt levels. These findings corroborated a higher potential for fungal salt tolerance than bacterial salt tolerance for communities derived from a nonsaline soil. In conclusion, by using salt as an environmental filter, we could interlink the targeted trait distribution with both the community structure and resulting functions of soil microbes. IMPORTANCE Understanding the role of ecological communities in maintaining multiple ecosystem processes is a central challenge in ecology. Soil microbial communities perform vital ecosystem functions, such as the decomposition of organic matter to provide plant nutrition. However, despite the functional importance of soil microorganisms, attribution of ecosystem function to particular constituents of the microbial community has been impeded by a lack of information linking microbial processes to community composition and structure. Here, we apply a conceptual framework to determine how microbial communities influence ecosystem processes, by applying a “top-down” trait-based approach. By determining the dependence of microbial processes on environmental factors (e.g., the tolerance to salinity), we can define the aggregate response trait distribution of the community, which then can be linked to the community structure and the resulting function performed by the microbial community.


2019 ◽  
Vol 46 (4) ◽  
pp. 671-679
Author(s):  
João Fabrício Mota Rodrigues ◽  
Fernando Landa Sobral ◽  
John B. Iverson ◽  
José Alexandre Felizola Diniz‐Filho

Author(s):  
Julia Kemppinen ◽  
Pekka Niittynen ◽  
Juha Aalto ◽  
Peter C. Le Roux ◽  
Miska Luoto

Sign in / Sign up

Export Citation Format

Share Document