microgel particle
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 11)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Jian Zhang ◽  
Zhe Sun ◽  
Xiujun Wang ◽  
Xiaodong Kang

Abstract Due to the reservoir heterogeneity, there is still a lot of remaining oil that cannot be displaced by water flooding. Therefore, taking the whole injection-production flow field as the research object, the dominant channel is divided into macro and micro channel. Then the corresponding oil displacement system is adopted to realize the continuous flow diversion and effective expansion of swept volume. For micro channels, the soft microgel particle dispersion can be used. It is a novel flooding system developed in recent years. Due to its excellent performance and advanced mechanism, the oil recovery rate can be greatly improved. Soft microgel particle dispersion consists of microgel particles and its carrier fluid. After coming into porous media, its unique phenomenon of particle phase separation appears, which leads to the properties of "plugging large pore and leave the small one open", and the deformation and migration characteristic in the poros media. Therefore, particle phase separation of soft microgel particle dispersion is studied by using the microfluidic technology and numerical simulation. On this basis, by adopting the NMR and 3D Printing technology, the research on its oil displacement mechanism is further carried out. Furthermore, the typical field application cases are analyzed. Results show that, soft microgel particles have good performance and transport ability in porous media. According to the core displacement experiment, this paper presents the matching coefficient between microgels and pore throat under effective plugging modes. Also, the particle phase separation happens when injecting microgels into the core, which makes the particles enter the large pore in the high permeability layer and fluid enters into small pore. Therefore, working in cooperation, this causes no damage to the low permeability layer. On this basis, theoretically guided by biofluid mechanics, the mathematical model of soft microgel particle is established to simulate its concentration distribution, which obtained the quantitative research results. Furthermore, the micro displacement experiment shows that, microgels has unique deformation and migration characteristic in the poros media, which can greatly expand swept volume. The macro displacement experiment shows that, microgels have good oil displacement performance. Finally, the soft microgel particle dispersion flooding technology has been applied in different oilfields since 2007. Results show that these field trials all obtain great oil increasing effect, with the input-output ratio range of 2.33-14.37. And two field application examples are further introduced. Through interdisciplinary innovative research methods, the oil displacement effect and field application of soft microgel particle dispersion is researched, which proves its progressiveness and superiority. The research results play an important role in promoting the application of this technology.


2021 ◽  
Author(s):  
Zhe Sun ◽  
Xiujun Wang ◽  
Xiaodong Kang

Abstract Although polymer flooding technology has been widely applied and achieved remarkable effect of increasing oil. Yet the "entry profile inversion" phenomenon occurs inevitably in its later stage, which seriously affects the development effect. In recent years, the soft microgel particle dispersion is a novel developed flooding system. Due to its excellent performance and advanced mechanism, it can slow down the process of profile inversion, and achieve the goal of deep fluid diversion and expanding swept volume. The soft microgel particle dispersion consists of microgel particles and its carrier fluid. After coming into porous media, it shows the properties of "plugging large pore and leave the small one open" and the motion feature of "trapping, deformation, migration". In this paper, reservoir adaptability evaluation, plugging and deformation characteristics of soft microgel particle dispersion in pore throat is explored by using the microfluidic technology and 3D Printing technology. On this basis, by adopting the NMR and CT tomography technology, the research on its oil displacement mechanism is further carried out. Furthermore, the typical field application case is analyzed. Results show that, soft microgel particles have good performance and transport ability in porous media. According to the reservoir adaptability evaluation, the size relationships between particles and core pore throat is obtained, to provide basis for field application scheme design. Through microfluidic experiments, the temporary plugging and deformation characteristics of particles in the pore throat are explored. Also, when injecting soft microgel particle into the core, the particle phase separation happens, which makes the particles enter and plug the large pore in the high permeability layer. Therefore, their carrier fluid displace oil in the small pore, which works in cooperation and causes no damage to the low permeability layer. Furthermore, by using NMR and CT techniques, its micro percolation law in porous media and remaining oil distribution during displacement process is analyzed. During the experiment, microgels presents the motion feature of "migration, trapping, and deformation" in the core pore, which can realize deep fluid diversion and expand swept volume. From 3D macro experiment, microgels can realize the goal of enhance oil recovery. Finally, the soft microgel particle dispersion flooding technology has been applied in different oilfields, such as Oman, Bohai and other oilfields, which all obtained great success. Through interdisciplinary innovative research methods, the oil displacement mechanism and field application of soft microgel particle dispersion is researched, which proves its progressiveness and superiority. The research results provide theoretical basis and technical support for the enhancing oil recovery significantly.


Langmuir ◽  
2021 ◽  
Vol 37 (17) ◽  
pp. 5299-5305
Author(s):  
Raymond P. Seekell ◽  
Kehua Lin ◽  
Yingxi Zhu

Gels ◽  
2020 ◽  
Vol 6 (4) ◽  
pp. 34
Author(s):  
Andrea Ruscito ◽  
Ester Chiessi ◽  
Yosra Toumia ◽  
Letizia Oddo ◽  
Fabio Domenici ◽  
...  

Poly(N-isopropylacrylamide) (PNIPAM) hydrogel microparticles with different core–shell morphologies have been designed, while maintaining an unvaried chemical composition: a morphology with (i) an un-crosslinked core with a crosslinked shell of PNIPAM chains and (ii) PNIPAM chains crosslinked to form the core with a shell consisting of tethered un-crosslinked PNIPAM chains to the core. Both morphologies with two different degrees of crosslinking have been assessed by confocal microscopy and tested with respect to their temperature responsivity and deformation by applying an osmotic stress. The thermal and mechanical behavior of these architectures have been framed within a Flory–Rehner modified model in order to describe the microgel volume shrinking occurring as response to a temperature increase or an osmotic perturbation. This study provides a background for assessing to what extent the mechanical features of the microgel particle surface affect the interactions occurring at the interface of a microgel particle with a cell, in addition to the already know ligand/receptor interaction. These results have direct implications in triggering a limited phagocytosis of microdevices designed as injectable drug delivery systems.


2020 ◽  
Vol 59 (7) ◽  
pp. 435-453
Author(s):  
Giovanni Vleminckx ◽  
Bruke Daniel Jofore ◽  
Paula Moldenaers ◽  
Christian Clasen
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document