multifunctional proteins
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 12)

H-INDEX

27
(FIVE YEARS 1)

2021 ◽  
Vol 17 (10) ◽  
pp. e1009915
Author(s):  
Laura Medina-Puche ◽  
Anelise F. Orílio ◽  
F. Murilo Zerbini ◽  
Rosa Lozano-Durán

The fast-paced evolution of viruses enables them to quickly adapt to the organisms they infect by constantly exploring the potential functional landscape of the proteins encoded in their genomes. Geminiviruses, DNA viruses infecting plants and causing devastating crop diseases worldwide, produce a limited number of multifunctional proteins that mediate the manipulation of the cellular environment to the virus’ advantage. Among the proteins produced by the members of this family, C4, the smallest one described to date, is emerging as a powerful viral effector with unexpected versatility. C4 is the only geminiviral protein consistently subjected to positive selection and displays a number of dynamic subcellular localizations, interacting partners, and functions, which can vary between viral species. In this review, we aim to summarize our current knowledge on this remarkable viral protein, encompassing the different aspects of its multilayered diversity, and discuss what it can teach us about geminivirus evolution, invasion requirements, and virulence strategies.


2021 ◽  
Vol 35 (4) ◽  
Author(s):  
Jennifer Jaufmann ◽  
Fabian Christoph Franke ◽  
Andreas Sperlich ◽  
Carolin Blumendeller ◽  
Isabel Kloos ◽  
...  

2020 ◽  
Vol 8 (12) ◽  
pp. 2020
Author(s):  
Ana Álvarez-Mena ◽  
Jesús Cámara-Almirón ◽  
Antonio de Vicente ◽  
Diego Romero

Since they were discovered, amyloids have proven to be versatile proteins able to participate in a variety of cellular functions across all kingdoms of life. This multitask trait seems to reside in their ability to coexist as monomers, aggregates or fibrillar entities, with morphological and biochemical peculiarities. It is precisely this common molecular behaviour that allows amyloids to cross react with one another, triggering heterologous aggregation. In bacteria, many of these functional amyloids are devoted to the assembly of biofilms by organizing the matrix scaffold that keeps cells together. However, consistent with their notion of multifunctional proteins, functional amyloids participate in other biological roles within the same organisms, and emerging unprecedented functions are being discovered. In this review, we focus on functional amyloids reported in gram-positive bacteria, which are diverse in their assembly mechanisms and remarkably specific in their biological functions that they perform. Finally, we consider cross-seeding between functional amyloids as an emerging theme in interspecies interactions that contributes to the diversification of bacterial biology.


2020 ◽  
Vol 13 (12) ◽  
pp. 421
Author(s):  
Agata Gitlin-Domagalska ◽  
Aleksandra Maciejewska ◽  
Dawid Dębowski

Bowman-Birk inhibitors (BBIs) are found primarily in seeds of legumes and in cereal grains. These canonical inhibitors share a highly conserved nine-amino acids binding loop motif CTP1SXPPXC (where P1 is the inhibitory active site, while X stands for various amino acids). They are natural controllers of plants’ endogenous proteases, but they are also inhibitors of exogenous proteases present in microbials and insects. They are considered as plants’ protective agents, as their elevated levels are observed during injury, presence of pathogens, or abiotic stress, i.a. Similar properties are observed for peptides isolated from amphibians’ skin containing 11-amino acids disulfide-bridged loop CWTP1SXPPXPC. They are classified as Bowman-Birk like trypsin inhibitors (BBLTIs). These inhibitors are resistant to proteolysis and not toxic, and they are reported to be beneficial in the treatment of various pathological states. In this review, we summarize up-to-date research results regarding BBIs’ and BBLTIs’ inhibitory activity, immunomodulatory and anti-inflammatory activity, antimicrobial and insecticidal strength, as well as chemopreventive properties.


Viruses ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1037
Author(s):  
Pallavi Sabharwal ◽  
Handanahal S. Savithri

Pepper vein banding virus (PVBV) is a distinct species in the Potyvirus genus which infects economically important plants in several parts of India. Like other potyviruses, PVBV encodes multifunctional proteins, with several interaction partners, having implications at different stages of the potyviral infection. In this review, we summarize the functional characterization of different PVBV-encoded proteins with an emphasis on their interaction partners governing the multifunctionality of potyviral proteins. Intrinsically disordered domains/regions of these proteins play an important role in their interactions with other proteins. Deciphering the function of PVBV-encoded proteins and their interactions with cognitive partners will help in understanding the putative mechanisms by which the potyviral proteins are regulated at different stages of the viral life-cycle. This review also discusses PVBV virus-like particles (VLPs) and their potential applications in nanotechnology. Further, virus-like nanoparticle-cell interactions and intracellular fate of PVBV VLPs are also discussed.


Author(s):  
Adriana Espinosa-Cantú ◽  
Erika Cruz-Bonilla ◽  
Lianet Noda-Garcia ◽  
Alexander DeLuna

2020 ◽  
Vol 48 (12) ◽  
pp. 6491-6502
Author(s):  
Diogo M Ribeiro ◽  
Alexis Prod’homme ◽  
Adrien Teixeira ◽  
Andreas Zanzoni ◽  
Christine Brun

Abstract Multifunctional proteins often perform their different functions when localized in different subcellular compartments. However, the mechanisms leading to their localization are largely unknown. Recently, 3′UTRs were found to regulate the cellular localization of newly synthesized proteins through the formation of 3′UTR-protein complexes. Here, we investigate the formation of 3′UTR-protein complexes involving multifunctional proteins by exploiting large-scale protein-protein and protein-RNA interaction networks. Focusing on 238 human ‘extreme multifunctional’ (EMF) proteins, we predicted 1411 3′UTR-protein complexes involving 54% of those proteins and evaluated their role in regulating protein cellular localization and multifunctionality. We find that EMF proteins lacking localization addressing signals, yet present at both the nucleus and cell surface, often form 3′UTR-protein complexes, and that the formation of these complexes could provide EMF proteins with the diversity of interaction partners necessary to their multifunctionality. Our findings are reinforced by archetypal moonlighting proteins predicted to form 3′UTR-protein complexes. Finally, the formation of 3′UTR-protein complexes that involves up to 17% of the proteins in the human protein-protein interaction network, may be a common and yet underestimated protein trafficking mechanism, particularly suited to regulate the localization of multifunctional proteins.


2020 ◽  
Vol 21 (10) ◽  
pp. 3543
Author(s):  
Taylor T. Fuselier ◽  
Hua Lu

The Pleckstrin Homology-like Domain (PHLD) class of proteins are multifunctional proteins. The class is comprised of two families of proteins, PHLDA and PHLDB, each with 3 members. All members of the families possess a pleckstrin homology (PH) domain. Though identified nearly 30 years ago, this class of proteins remains understudied with PHLDA family members receiving most of the research attention. Recent studies have also begun to reveal the functions of the PHLDB family proteins in regulation of p53 and AKT signaling pathways important for cancer and metabolism. This review will discuss current research and offer some prospects on the possible roles of both families in cancer and metabolism.


BIOPHYSICS ◽  
2020 ◽  
Vol 65 (3) ◽  
pp. 390-403
Author(s):  
A. B. Uzdensky

2019 ◽  
Author(s):  
Diogo M. Ribeiro ◽  
Alexis Prod’homme ◽  
Adrien Teixeira ◽  
Andreas Zanzoni ◽  
Christine Brun

AbstractMultifunctional proteins often perform their different functions when localized in different subcellular compartments. However, the mechanisms leading to their localization are largely unknown. Recently, 3’UTRs were found to regulate the cellular localization of newly synthesized proteins through the co-translational formation of 3’UTR-protein complexes. Here, we investigate the formation of 3’UTR-protein complexes involving multifunctional proteins by exploiting large-scale protein-protein and protein-RNA interaction networks. Focusing on 238 human ‘extreme multifunctional’ (EMF) proteins, we predicted 1411 3’UTR-protein complexes involving 128 EMF proteins and evaluated their role in regulating protein cellular localization and multifunctionality. Notably, we find that EMF proteins lacking localization addressing signals, yet present at both the nucleus and cell surface, often form 3’UTR-protein complexes. In addition, they provide EMF proteins with the diversity of interaction partners necessary to their multifunctionality. Archetypal moonlighting proteins are also predicted to form 3’UTR-protein complexes thereby reinforcing our findings. Finally, our results indicate that the formation of 3’UTR-protein complex may be a common phenomenon in human cells, affecting up to 20% of the proteins in the human interactome.


Sign in / Sign up

Export Citation Format

Share Document