scholarly journals Layer Adhesion Test of Additively Manufactured Pins: A Shear Test

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 55
Author(s):  
Márton Tamás Birosz ◽  
Mátyás Andó ◽  
Ferenc Safranyik

Additive Manufacturing (AM) became a popular engineering solution not only for Rapid Prototyping (RP) as a part of product development but as an effective solution for producing complex geometries as fully functional components. Even the modern engineering tools, such as the different simulation software, have a shape optimization solution especially for parts created by AM. To extend the application of these methods in this work, the failure properties of the 3D-printed parts have been investigated via shear test measurements. The layer adhesion can be calculated based on the results, which can be used later for further numerical modeling. In conclusion, it can be stated that the layer formation and the structure of the infill have a great influence on the mechanical properties. The layers formed following the conventional zig-zag infill style show a random failure, and the layers created via extruded concentric circles show more predictable load resistance.

Author(s):  
ZH Yuan ◽  
SY Guo ◽  
SN Zhang ◽  
JQ Zhao ◽  
WJ Lu ◽  
...  

Based on the suspension of a missile using folding rotary wings and airbags, in order to improve the basic parameters and motion characteristics of the rotor during the unfolding process and analyze the aerodynamic characteristics of the entire device in the suspension state, after proposing a scheme of double-spin mechanism, the main folding and unfolding mechanism, initial driving device, rotating driving device, and locking mechanism were designed, and the simulation research is studied by the Automatic Dynamic Analysis of Mechanical System and Ansys Fluent Fluid Simulation software, respectively. The results show that the rotation rate was controlled at 41.8 mm/s, the various motion parameters are reasonable, and the operation process is relatively smooth, with high reliability. The speed and pressure value at the tip of the rotor are higher and the aerodynamic disturbance is obvious, which has a great influence on the aerodynamic performance. The speed and pressure distribution of the surrounding flow field is stable, the lift provided is 46 N, and the lift coefficient is 0.55, which can ensure the long-time suspension state of the missile. This paper puts forward a valuable design idea and has practical reference value for the research of the suspended missile.


2021 ◽  
Vol 11 (3) ◽  
pp. 1038
Author(s):  
Sara Condino ◽  
Giuseppe Turini ◽  
Virginia Mamone ◽  
Paolo Domenico Parchi ◽  
Vincenzo Ferrari

Simulation for surgical training is increasingly being considered a valuable addition to traditional teaching methods. 3D-printed physical simulators can be used for preoperative planning and rehearsal in spine surgery to improve surgical workflows and postoperative patient outcomes. This paper proposes an innovative strategy to build a hybrid simulation platform for training of pedicle screws fixation: the proposed method combines 3D-printed patient-specific spine models with augmented reality functionalities and virtual X-ray visualization, thus avoiding any exposure to harmful radiation during the simulation. Software functionalities are implemented by using a low-cost tracking strategy based on fiducial marker detection. Quantitative tests demonstrate the accuracy of the method to track the vertebral model and surgical tools, and to coherently visualize them in either the augmented reality or virtual fluoroscopic modalities. The obtained results encourage further research and clinical validation towards the use of the simulator as an effective tool for training in pedicle screws insertion in lumbar vertebrae.


Author(s):  
Norun Abdul Malek ◽  
Athirah Mohd Ramly ◽  
Atiah Sidek ◽  
Sarah Yasmin Mohamad

<p>3D printing is one of the additive manufacturing technology that has gain popularity for time saving and complex design. This technology increases a degree of flexibility for potential 3D RF applications such as wearable and conformal antennas. This paper demonstrates a circular patch antenna fabricated on 3D printed Acrylonitrile Butadiene Styrene (ABS) filament. The main reason of using a 3D printer is that it is accurate, easy to fabricate of a complex geometry and the ability to create new antennas that cannot be made using conventional fabrication techniques. The ABS material has a tangent loss of 0.0051 and the relative permittivity is 2.74. The thickness of the substrate is 1.25 mm. The simulation has been performed using Computer Simulation Technology (CST). The return loss from simulation software is in good match with measurement which is 12.5dB at 2.44GHz. Hence, from the results obtained, the ABS could be used as a substrate for an antenna.</p>


Micromachines ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1089
Author(s):  
Inkyum Kim ◽  
Daewon Kim

The ocean covers 70% of the earth’s surface and is one of the largest uncultivated resources still available for harvesting energy. The triboelectric energy harvesting technology has the potential to effectively convert the ocean’s “blue energy” into electricity. A half-cylinder structure including rollers floating on the water has already been used, in which the pendulum motion of the rollers is driven by the waveform. For the stable motion of the rollers, the printed surface of the device was treated with acetone for attaining hydrophilicity. The electrical outputs with the proposed device were enhanced by increasing the contact surface area by simply implementing the double roller structure with double side-covered electrodes. With the optimized structure, the maximum power density reached a value of 69.34 µW m−2 at a load resistance of 200 MΩ with the device’s high output durability. Finally, the fabricated device was also applied to the artificial water waves to demonstrate the possibility of using this device in the ocean. By simply modifying the electrode structure and adding a roller, this device demonstrated the ability to generate over 160% of electrical output with the same covered area of the ocean by the triboelectric nanogenerators (TENGs) and potential ocean application.


2012 ◽  
Vol 271-272 ◽  
pp. 156-162
Author(s):  
Hui Ling Wei ◽  
Qun Gao ◽  
Zhi Jian Zong

The different geometric sizes, different adhesive thickness and different surface treatments have great influence on the properties of aluminum alloy 6063 bonding joints. This paper takes single lap joint for object, adopts the tensile shear test, takes the tensile shear strength as the judgment basis, and exploresthe variation inperformance of aluminum alloy 6063 bondingjoints. The test results show that: Aluminum alloy 6063 bonding joints occur serrated yielding phenomenon inthe tensile shear test; In a certain layer thickness range, tensile shear strength of aluminum alloy 6063 bondingjoints correspondingly increaseswiththe thickness of samples increasing; Different surface treatments on aluminum alloy 6063 have a great influence on tensile-shear strength, and mechanical polishing and skim can significantly improve tensile shear strength of aluminum alloy 6063 bonding joints.


2016 ◽  
Vol 693 ◽  
pp. 952-958
Author(s):  
Guo Yi Guo

Through injection molding simulation software and examples of injection,This paper analyzes the causes of the weld line when injection molding products, the impact on the quality of products, analysis of the injection mold gate location selection problems and defects produced by principle, think weld line has a great influence on the quality of injection molding, on this basis, put forward in view of the weld line, the influence of the mold gate location selection method in the practical work of is: reasonable choose the location of the gate, to control the degree of weld line, as far as possible to reduce the number of the weld line, or make them produce not important position in the mold. Etc.


2013 ◽  
Vol 341-342 ◽  
pp. 451-455
Author(s):  
Guang Hua Nie ◽  
Peng Fei Cheng

Asphalt paver usually produces pressure shock in the starting process, makes the velocity fluctuations increase, have great influence on pavement quality. This paper carried out the analysis of the causes of asphalt paver started the process of starting pressure, through simulation software to analyze the influence of different starting time of starting pressure driving system in commonly paving speed, puts forward the measures to reduce the hydraulic impact.


2013 ◽  
Vol 652-654 ◽  
pp. 135-138
Author(s):  
Zheng Jie Lu ◽  
Sen Kai Lu

The uniaxial deformation properties of the SiC/Fe–20Cr composite have been studied using the Solidwork simulation software applied the finite element method (FEM). The simulated results have shown that the composites are relatively anisotropy. Fe–20Cr matrix and SiC network ceramic exhibit different mechanical behaviour. The ultimate stress is found near the interface of composites. The configuration of SiC has relatively great influence on intensity and distribution of stress in the composite. The material behaves in a nearly bilinear manner defined by the Young’s modulus and an elastic-plastic modulus. The large deformation appears inside Fe–20Cr matrix. The elastic deformation in the ceramic is accommodated by plastic deformation in the metal phase. Fe–20Cr and SiC can restrict each other to prevent from producing the strain under the load.


Sign in / Sign up

Export Citation Format

Share Document