IMPORTANCE OF VERY ACCURATE LUMINOSITIES FOR STELLAR FORMATION AND EVOLUTION

Author(s):  
A. Maeder
2018 ◽  
Vol 618 ◽  
pp. A2 ◽  
Author(s):  
J. S. Clark ◽  
M. E. Lohr ◽  
L. R. Patrick ◽  
F. Najarro ◽  
H. Dong ◽  
...  

Context. Found within the central molecular zone, the Quintuplet is one of the most massive young clusters in the Galaxy. As a consequence it offers the prospect of constraining stellar formation and evolution in extreme environments. However, current observations suggest that it comprises a remarkably diverse stellar population that is difficult to reconcile with an instantaneous formation event. Aims. To better understand the nature of the cluster our aim is to improve observational constraints on the constituent stars. Methods. In order to accomplish this goal we present Hubble Space Telescope/NICMOS+WFC3 photometry and Very Large Telescope/SINFONI+KMOS spectroscopy for ∼100 and 71 cluster members, respectively. Results. Spectroscopy of the cluster members reveals the Quintuplet to be far more homogeneous than previously expected. All supergiants are classified as either O7–8 Ia or O9–B0 Ia, with only one object of earlier (O5 I–III) spectral type. These stars form a smooth morphological sequence with a cohort of seven early-B hypergiants and six luminous blue variables and WN9-11h stars, which comprise the richest population of such stars of any stellar aggregate known. In parallel, we identify a smaller population of late-O hypergiants and spectroscopically similar WN8–9ha stars. No further H-free Wolf–Rayet (WR) stars are identified, leaving an unexpectedly extreme ratio of 13:1 for WC/WN stars. A subset of the O9–B0 supergiants are unexpectedly faint, suggesting they are both less massive and older than the greater cluster population. Finally, no main sequence objects were identifiable. Conclusions. Due to uncertainties over which extinction law to apply, it was not possible to quantitatively determine a cluster age via isochrone fitting. Nevertheless, we find an impressive coincidence between the properties of cluster members preceding the H-free WR phase and the evolutionary predictions for a single, non-rotating 60 M⊙ star; in turn this implies an age of ∼3.0–3.6 Myr for the Quintuplet. Neither the late O-hypergiants nor the low luminosity supergiants are predicted by such a path; we suggest that the former either result from rapid rotators or are the products of binary driven mass-stripping, while the latter may be interlopers. The H-free WRs must evolve from stars with an initial mass in excess of 60 M⊙ but it appears difficult to reconcile their observational properties with theoretical expectations. This is important since one would expect the most massive stars within the Quintuplet to be undergoing core-collapse/SNe at this time; since the WRs represent an evolutionary phase directly preceding this event,their physical properties are crucial to understanding both this process and the nature of the resultant relativistic remnant. As such, the Quintuplet provides unique observational constraints on the evolution and death of the most massive stars forming in the local, high metallicity Universe.


An account is first given of the observed chemical composition of objects in the Universe (Sun, Solar System, stars, gas clouds) and of important variations of composition from object to object. The initial composition is then discussed in terms of the Hot Big Bang cosmological theory, and the different types of nuclear reaction which are believed to have occurred in stars and to have modified this composition are considered. Finally, an account is given of the interpretation of the present observations in terms of the initial chemical composition and of galactic and stellar formation and evolution.


2014 ◽  
Vol 9 (S307) ◽  
pp. 330-335 ◽  
Author(s):  
E. Alecian ◽  
C. Neiner ◽  
G. A. Wade ◽  
S. Mathis ◽  
D. Bohlender ◽  
...  

AbstractIt is now well established that a fraction of the massive (M> 8M⊙) star population hosts strong, organised magnetic fields, most likely of fossil origin. The details of the generation and evolution of these fields are still poorly understood. The BinaMIcS project takes an important step towards the understanding of the interplay between binarity and magnetism during the stellar formation and evolution, and in particular the genesis of fossil fields, by studying the magnetic properties of close binary systems. The components of such systems are most likely formed together, at the same time and in the same environment, and can therefore help us to disentangle the role of initial conditions on the magnetic properties of the massive stars from other competing effects such as age or rotation. We present here the main scientific objectives of the BinaMIcS project, as well as preliminary results from the first year of observations from the associated ESPaDOnS and Narval spectropolarimetric surveys.


2006 ◽  
Vol 2 (S240) ◽  
pp. 613-618
Author(s):  
D. Sinachopoulos ◽  
P. Gavras ◽  
Th. Medupe ◽  
Ch. Ducourant ◽  
O. Dionatos

AbstractThe relative positions of Hipparcos visual double star components are currently known with a precision around fifty mas. Modern CCD astrometric observations of these objects achieve an accuracy of their angular separation between ten and twenty mas per observation. New CCD measurements have been obtained at Kryonerion Observatory in the north hemisphere. They provide current relative positions of visual double stars which are at least twice as accurate as the ones provided by Hipparcos. The new measurements will permit us to extract the physical pairs from the sample, and the double stars, which have components of common origin. Final statistics of these systems will improve our understanding of stellar formation and evolution rates of wide binaries in the solar neighborhood.


2017 ◽  
Vol 13 (S334) ◽  
pp. 312-313
Author(s):  
Orlando J. Katime Santrich ◽  
Silvia Rossi ◽  
Yuri Abuchaim ◽  
Geraldo Gonçalves

AbstractOpen clusters are important objects to study the galactic structure and its dynamical behavior as well as the stellar formation and evolution. We carried out a spectroscopic analysis to derive atmospheric parameters and chemical composition for 52 giant stars within 9 galactic open clusters. We have used the high-resolution spectra from FEROS, HARPS and UVES in the ESO archive. The methodology used is based on LTE-hypothesis. Abundances of C, N, O, Na, Mg, Al, Si, Ca, Ti, Cr, Ni, YII, LaII, CeII, and NdII were calculated. Although most of these clusters present spectroscopic analysis in the literature, some CNO and s-process abundances were not previously estimated or were calculated with high uncertainties. Several lines of such elements were identified and used to calculate new abundances and improve some previous one.


2017 ◽  
Vol 12 (S330) ◽  
pp. 225-226
Author(s):  
F. Jiménez-Esteban ◽  
E. Solano

AbstractBinary and multiple stars have long provided an effective method of testing stellar formation and evolution theories. In particular, wide binary systems with separations > 20,000 au are particularly challenging as their physical separations are beyond the typical size of a collapsing cloud core (5,000 - 10,000 au). We present here a preliminary work in which we make use of the TGAS catalogue and Virtual Observatory tools and services (Aladin, TOPCAT, STILTS, VOSA, VizieR) to identify binary and multiple star candidate systems. The catalogue will be available from the Spanish VO portal (http://svo.cab.inta-csic.es) in the coming months.


Author(s):  
Michael W. Bench ◽  
Jason R. Heffelfinger ◽  
C. Barry Carter

To gain a better understanding of the surface faceting that occurs in α-alumina during high temperature processing, atomic force microscopy (AFM) studies have been performed to follow the formation and evolution of the facets. AFM was chosen because it allows for analysis of topographical details down to the atomic level with minimal sample preparation. This is in contrast to SEM analysis, which typically requires the application of conductive coatings that can alter the surface between subsequent heat treatments. Similar experiments have been performed in the TEM; however, due to thin foil and hole edge effects the results may not be representative of the behavior of bulk surfaces.The AFM studies were performed on a Digital Instruments Nanoscope III using microfabricated Si3N4 cantilevers. All images were recorded in air with a nominal applied force of 10-15 nN. The alumina samples were prepared from pre-polished single crystals with (0001), , and nominal surface orientations.


Sign in / Sign up

Export Citation Format

Share Document