scholarly journals Impact of middle range energy electron precipitations on polar winter ozone losses

2019 ◽  
Vol 127 ◽  
pp. 01005
Author(s):  
Kseniia Golubenko ◽  
Irina Mironova ◽  
Eugene Rozanov

In this paper we present the study of polar winter atmospheric response to middle range energy electron precipitations. We analse the variability of the odd nitrogen group NOx, hydrogen group HOx in the polar wonter atmosphere and estimate the ozone (O3) depletion caused by the middle range energy electron precipitations. For the study we exploit 1-D radiative-convective model with interactive neutral and ion chemistry. Ionization rates induced by middle-energy electrons were taken from the CMIP6 (Coupled Model Intercomparison Project Phase 6) solar forcing dataset. The atmospheric response to ionization rates induced by middleenergy electrons during polar night consists of increase of mesospheric HOx by 0.1-0.4 ppbv and NOx by 10-90 ppbv driving ozone losses up to 5% over zonal band of about 750 NH.

2020 ◽  
Author(s):  
Hilde Nesse Tyssøy ◽  
Miriam Sinnhuber ◽  
Timo Asikainen ◽  
Max van de Kamp ◽  
Joshua Pettit ◽  
...  

<p>Quantifying the ionization rates due to medium energy electron (MEE) precipitation into the mesosphere has long been an outstanding question. It is the key to understand the total effect of particle precipitation on the atmosphere. The first MEE ionization rate was provided by the Atmospheric Ionization Module Osnabrück (AIMOS) in 2009. It applies electron measurements by the 0<sup>o</sup> electron detector on the MEPED instrument on board the NOAA/POES satellites together with geomagnetic indices. Since then several other efforts to estimate the MEE precipitation and associated ionization rates has been made taking account e.g. of cross contamination by low-energy protons; Full Range Energy Electron Spectra (FRES) and ISSI-19. Recently, a parameterization based on the same electron data, scaled by the geomagnetic index Ap, has been included in the solar-driven particle forcing in the recommendation for Coupled Model Intercomparison Project 6 (CMIP6). Another parameterization aiming to resolve substorm activity applies the SML index, AISstorm. Further, three different methods to construct the total bounce loss cone fluxes based on both MEPED detectors has been suggested by the University of Colorado, University of Oulo, and the University of Bergen. In total, the space physics community offers a wide range of mesospheric ionization rates to be used in studies of the subsequent chemical-dynamical impact of the atmosphere, which are all based on the MEPED electron measurement.</p><p>Here we present a review of eight different estimates of energetic electron fluxes and the ionization rates during an event in April 2010. The objective of this comparison is to understand the potential uncertainty related to the MEE energy input in order to assess its subsequent impact on the atmosphere. We find that although the different parameterizations agree well in terms of the temporal variability, they differ by orders of magnitude in ionization strength both during geomagnetic quiet and disturbed periods and show some inconsistency in terms of latitudinal coverage.</p>


2016 ◽  
Author(s):  
Edwin P. Gerber ◽  
Elisa Manzini

Abstract. Diagnostics of atmospheric momentum and energy transport are needed to investigate the origin of circulation biases in climate models and to understand the atmospheric response to natural and anthropogenic forcing. Model biases in atmospheric dynamics are one of the factors that increase uncertainty in projections of regional climate, precipitation, and extreme events. Here we define requirements for diagnosing the atmospheric circulation and variability across temporal scales and for evaluating the transport of mass, momentum and energy by dynamical processes in the context of the Coupled Model Intercomparison Project Phase 6 (CMIP6). These diagnostics target the assessments of both resolved and parameterized dynamical processes in climate models, a novelty for CMIP, and are particularly vital for assessing the impact of the stratosphere on surface climate change.


Author(s):  
Isaac Kwesi Nooni ◽  
Daniel Fiifi T. Hagan ◽  
Guojie Wang ◽  
Waheed Ullah ◽  
Jiao Lu ◽  
...  

The main goal of this study was to assess the interannual variations and spatial patterns of projected changes in simulated evapotranspiration (ET) in the 21st century over continental Africa based on the latest Shared Socioeconomic Pathways and the Representative Concentration Pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) provided by the France Centre National de Recherches Météorologiques (CNRM-CM) model in the Sixth Phase of Coupled Model Intercomparison Project (CMIP6) framework. The projected spatial and temporal changes were computed for three time slices: 2020–2039 (near future), 2040–2069 (mid-century), and 2080–2099 (end-of-the-century), relative to the baseline period (1995–2014). The results show that the spatial pattern of the projected ET was not uniform and varied across the climate region and under the SSP-RCPs scenarios. Although the trends varied, they were statistically significant for all SSP-RCPs. The SSP5-8.5 and SSP3-7.0 projected higher ET seasonality than SSP1-2.6 and SSP2-4.5. In general, we suggest the need for modelers and forecasters to pay more attention to changes in the simulated ET and their impact on extreme events. The findings provide useful information for water resources managers to develop specific measures to mitigate extreme events in the regions most affected by possible changes in the region’s climate. However, readers are advised to treat the results with caution as they are based on a single GCM model. Further research on multi-model ensembles (as more models’ outputs become available) and possible key drivers may provide additional information on CMIP6 ET projections in the region.


2012 ◽  
Vol 25 (21) ◽  
pp. 7764-7771 ◽  
Author(s):  
Sang-Wook Yeh ◽  
Yoo-Geun Ham ◽  
June-Yi Lee

This study assesses the changes in the tropical Pacific Ocean sea surface temperature (SST) trend and ENSO amplitude by comparing a historical run of the World Climate Research Programme Coupled Model Intercomparison Project (CMIP) phase-5 multimodel ensemble dataset (CMIP5) and the CMIP phase-3 dataset (CMIP3). The results indicate that the magnitude of the SST trend in the tropical Pacific basin has been significantly reduced from CMIP3 to CMIP5, which may be associated with the overestimation of the response to natural forcing and aerosols by including Earth system models in CMIP5. Moreover, the patterns of tropical warming over the second half of the twentieth century have changed from a La Niña–like structure in CMIP3 to an El Niño–like structure in CMIP5. Further analysis indicates that such changes in the background state of the tropical Pacific and an increase in the sensitivity of the atmospheric response to the SST changes in the eastern tropical Pacific have influenced the ENSO properties. In particular, the ratio of the SST anomaly variance in the eastern and western tropical Pacific increased from CMIP3 to CMIP5, indicating that a center of action associated with the ENSO amplitude has shifted to the east.


2011 ◽  
Vol 24 (16) ◽  
pp. 4402-4418 ◽  
Author(s):  
Aaron Donohoe ◽  
David S. Battisti

Abstract The planetary albedo is partitioned into a component due to atmospheric reflection and a component due to surface reflection by using shortwave fluxes at the surface and top of the atmosphere in conjunction with a simple radiation model. The vast majority of the observed global average planetary albedo (88%) is due to atmospheric reflection. Surface reflection makes a relatively small contribution to planetary albedo because the atmosphere attenuates the surface contribution to planetary albedo by a factor of approximately 3. The global average planetary albedo in the ensemble average of phase 3 of the Coupled Model Intercomparison Project (CMIP3) preindustrial simulations is also primarily (87%) due to atmospheric albedo. The intermodel spread in planetary albedo is relatively large and is found to be predominantly a consequence of intermodel differences in atmospheric albedo, with surface processes playing a much smaller role despite significant intermodel differences in surface albedo. The CMIP3 models show a decrease in planetary albedo under a doubling of carbon dioxide—also primarily due to changes in atmospheric reflection (which explains more than 90% of the intermodel spread). All models show a decrease in planetary albedo due to the lowered surface albedo associated with a contraction of the cryosphere in a warmer world, but this effect is small compared to the spread in planetary albedo due to model differences in the change in clouds.


2013 ◽  
Vol 26 (18) ◽  
pp. 7187-7197 ◽  
Author(s):  
Wei Cheng ◽  
John C. H. Chiang ◽  
Dongxiao Zhang

Abstract The Atlantic meridional overturning circulation (AMOC) simulated by 10 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) for the historical (1850–2005) and future climate is examined. The historical simulations of the AMOC mean state are more closely matched to observations than those of phase 3 of the Coupled Model Intercomparison Project (CMIP3). Similarly to CMIP3, all models predict a weakening of the AMOC in the twenty-first century, though the degree of weakening varies considerably among the models. Under the representative concentration pathway 4.5 (RCP4.5) scenario, the weakening by year 2100 is 5%–40% of the individual model's historical mean state; under RCP8.5, the weakening increases to 15%–60% over the same period. RCP4.5 leads to the stabilization of the AMOC in the second half of the twenty-first century and a slower (then weakening rate) but steady recovery thereafter, while RCP8.5 gives rise to a continuous weakening of the AMOC throughout the twenty-first century. In the CMIP5 historical simulations, all but one model exhibit a weak downward trend [ranging from −0.1 to −1.8 Sverdrup (Sv) century−1; 1 Sv ≡ 106 m3 s−1] over the twentieth century. Additionally, the multimodel ensemble–mean AMOC exhibits multidecadal variability with a ~60-yr periodicity and a peak-to-peak amplitude of ~1 Sv; all individual models project consistently onto this multidecadal mode. This multidecadal variability is significantly correlated with similar variations in the net surface shortwave radiative flux in the North Atlantic and with surface freshwater flux variations in the subpolar latitudes. Potential drivers for the twentieth-century multimodel AMOC variability, including external climate forcing and the North Atlantic Oscillation (NAO), and the implication of these results on the North Atlantic SST variability are discussed.


2012 ◽  
Vol 16 (7) ◽  
pp. 2005-2020 ◽  
Author(s):  
S. L. Sun ◽  
H. S. Chen ◽  
W. M. Ju ◽  
J. Song ◽  
J. J. Li ◽  
...  

Abstract. To understand the causes of the past water cycle variations and the influence of climate variability on the streamflow, lake storage, and flood potential, we analyze the changes in streamflow and the underlying drivers in four typical watersheds (Gaosha, Meigang, Saitang, and Xiashan) within the Poyang Lake Basin, based on the meteorological observations at 79 weather stations, and datasets of streamflow and river level at four hydrological stations for the period of 1961-2000. The contribution of different climate factors to the change in streamflow in each watershed is estimated quantitatively using the water balance equations. Results show that in each watershed, the annual streamflow exhibits an increasing trend from 1961–2000. The increases in streamflow by 4.80 m3 s−1 yr−1 and 1.29 m3 s−1 yr−1 at Meigang and Gaosha, respectively, are statistically significant at the 5% level. The increase in precipitation is the biggest contributor to the streamflow increment in Meigang (3.79 m3 s−1 yr−1), Gaosha (1.12 m3 s−1 yr−1), and Xiashan (1.34 m3 s−1 yr−1), while the decrease in evapotranspiration is the major factor controlling the streamflow increment in Saitang (0.19 m3 s−1 yr−1). In addition, radiation and wind contribute more than actual vapor pressure and mean temperature to the changes in evapotranspiration and streamflow for the four watersheds. For revealing the possible change of streamflow due to the future climate change, we also investigate the projected precipitation and evapotranspiration from of the Coupled Model Intercomparison Project phase 3 (CMIP3) under three greenhouse gases emission scenarios (SRESA1B, SRESA2 and SRESB1) for the period of 2061–2100. When the future changes in the soil water storage changes are assumed ignorable, the streamflow shows an uptrend with the projected increases in both precipitation and evapotranspiration (except for the SRESB1 scenario in Xiashan watershed) relative to the observed mean during 1961–2000. Furthermore, the largest increase in the streamflow is found at Meigang (+4.31%) and Xiashan (+3.84%) under the SRESA1B scenario, while the increases will occur at Saitang (+6.87%) and Gaosha (+5.15%) under the SRESB1 scenario.


2016 ◽  
Author(s):  
Stephen M. Griffies ◽  
Gokhan Danabasoglu ◽  
Paul J. Durack ◽  
Alistair J. Adcroft ◽  
V. Balaji ◽  
...  

Abstract. The Ocean Model Intercomparison Project (OMIP) aims to provide a framework for evaluating, understanding, and improving the ocean and sea-ice components of global climate and earth system models contributing to the Coupled Model Intercomparison Project Phase 6 (CMIP6). OMIP addresses these aims in two complementary manners: (A) by providing an experimental protocol for global ocean/sea-ice models run with a prescribed atmospheric forcing, (B) by providing a protocol for ocean diagnostics to be saved as part of CMIP6. We focus here on the physical component of OMIP, with a companion paper (Orr et al., 2016) offering details for the inert chemistry and interactive biogeochemistry. The physical portion of the OMIP experimental protocol follows that of the interannual Coordinated Ocean-ice Reference Experiments (CORE-II). Since 2009, CORE-I (Normal Year Forcing) and CORE-II have become the standard method to evaluate global ocean/sea-ice simulations and to examine mechanisms for forced ocean climate variability. The OMIP diagnostic protocol is relevant for any ocean model component of CMIP6, including the DECK (Diagnostic, Evaluation and Characterization of Klima experiments), historical simulations, FAFMIP (Flux Anomaly Forced MIP), C4MIP (Coupled Carbon Cycle Climate MIP), DAMIP (Detection and Attribution MIP), DCPP (Decadal Climate Prediction Project), ScenarioMIP (Scenario MIP), as well as the ocean-sea ice OMIP simulations. The bulk of this paper offers scientific rationale for saving these diagnostics.


2020 ◽  
Author(s):  
Charlotte Pascoe ◽  
David Hassell ◽  
Martina Stockhause ◽  
Mark Greenslade

<div>The Earth System Documentation (ES-DOC) project aims to nurture an ecosystem of tools & services in support of Earth System documentation creation, analysis and dissemination. Such an ecosystem enables the scientific community to better understand and utilise Earth system model data.</div><div>The ES-DOC infrastructure for the Coupled Model Intercomparison Project Phase 6 (CMIP6) modelling groups to describe their climate models and make the documentation available on-line has been available for 18 months, and more recently the automatic generation of documentation of every published simulation has meant that every CMIP6 dataset within the Earth System Grid Federation (ESGF) is now immediately connected to the ES-DOC description of the entire workflow that created it, via a “further info URL”.</div><div>The further info URL is a landing page from which all of the relevant CMIP6 documentation relevant to the data may be accessed, including experimental design, model formulation and ensemble description, as well as providing links to the data citation information.</div><div>These DOI landing pages are part of the Citation Service, provided by DKRZ. Data citation information is also available independently through the ESGF Search portal or in the DataCite search or Google’s dataset search. It provides users of CMIP6 data with the formal citation that should accompany any use of the datasets that comprise their analysis.</div><div>ES-DOC services and the Citation Service form a CMIP6 project  collaboration, and depend upon structured documentation provided by the scientific community. Structured scientific metadata has an important role in science communication, however it’s creation and collation exacts a cost in time, energy and attention.  We discuss progress towards a balance between the ease of information collection and the complexity of our information handling structures.</div><div> </div><div>CMIP6: https://pcmdi.llnl.gov/CMIP6/</div><div>ES-DOC: https://es-doc.org/</div><div>Further Info URL: https://es-doc.org/cmip6-ensembles-further-info-url</div><div> <p>Citation Service: http://cmip6cite.wdc-climate.de</p> </div>


Sign in / Sign up

Export Citation Format

Share Document