scholarly journals An integrated multiple layer perceptron-genetic algorithm decision support system for photovoltaic power plant site selection

Author(s):  
Rajkumari Malemnganbi ◽  
Benjamin A. Shimray

There is a need for non-renewable energy sources in generation of power for almost every domestic and commercial purposes. This source of energy helps in the development of a country. Because of the increasing usage of the fossil fuels and depletion of these resources, our focus has been shifted towards the renewable sources of energy like solar, water and wind. Therefore, in the present scenario, the usage of renewable sources has been increasing rapidly. Selection of a solar power plant (SPP) requires environmental factor, local terrain, and local weather issues. Thus, a large amount of investment is required for installation. Multi-criteria decision making (MCDM) is a method that identifies one in choosing the best sites among the other proposed options. This paper gives a detailed study of optimal ranking of SPP site using analytical hierarchy process (AHP), multiple layer perceptron (MLP) neural network trained with back propagation (BP) algorithm and genetic algorithm (GA). Three SPP sites of India were considered and various important criteria like local weather, geographical location, and environmental factors are included in our study as SPP site selection is a multi-criteria problem. A precise comparison of these three methods is listed in this paper.

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7525
Author(s):  
Mariusz Niekurzak

The aim of the manuscript was to present the collective results of research on the profitability of using various renewable sources in Poland with the greatest development potential. In the paper, the economic parameters of various investment projects were determined and calculated, i.e., Net Capital Value (NPV), Internal Rate of Return (IRR) and the Period of Return on Invested Capital (PBT). The economic assessment of the use of RES technologies was supplemented with the assessment of environmental benefits. The ecological criterion adopted in the study was the assessment of the potential and costs of reducing greenhouse gas emissions as a result of replacing fossil fuels with renewable energy technologies. On the basis of the constructed economic model to assess the profitability of investments, it has been shown that the analyzed projects will start to bring, depending on their type and technical specification, measurable economic benefits in the form of a reduction in the amount of energy purchased on an annual basis and environmental benefits in the form of reduction of carbon dioxide emissions to the atmosphere. Moreover, the calculations show a high potential for the use of certain renewable sources in Poland, which contributes to the fulfillment of energy and emission obligations towards the EU. The analyzes and research of the Polish energy market with the use of the presented models have shown that the project is fully economically justified and will allow investors to make a rational decision on the appropriate selection of a specific renewable energy source for their investment. The presented economic models to assess the profitability of investments in renewable energy sources can be successfully used in other countries and can also be a starting point for a discussion about the direction of energy development. Due to the lack of collective, original and up-to-date research on the domestic market, the manuscript provides the reader with the necessary knowledge regarding the legitimacy of using renewable energy sources, investment and environmental profitability.


Author(s):  
A. Tunc ◽  
G. Tuncay ◽  
Z. Alacakanat ◽  
F. S. Sevimli

<p><strong>Abstract.</strong> Today, countries are shifting their energy policies towards to renewable energy sources. The main reasons for this can be summarized as the reduction of fossil fuel resources, resulting in cost increase and their harmful effect on the ecological balance. Since renewable energy sources are both economical and eco-friendly, for countries which have high solar energy potential such as Turkey, it is reasonable to direct their energy policies to solar energy which is a renewable energy source.</p><p>In this study, the development of renewable energy legislation in Turkey, from past to present has been examined and implementation steps for the licenced and unlicensed generation of electricity from solar energy have been introduced. Ten impact factors have been identified as the first step for the implementation of the solar power plant site selection in Istanbul, which was determined as the pilot region. Impact factors weighted using Analytical Hierarchy Process (AHP) method. Concurrently, the weights of these determined impact factors were compared with the weights obtained by evaluating the results of the “Evaluation of Solar Energy Power Plant Site Selection Factors” survey conducted during the study. After obtaining the weights, the relevant data were collected and the necessary analyses were performed with the help of the GIS software and the most suitable places were provided for the solar power plant for Istanbul.</p>


2018 ◽  
Vol 204 ◽  
pp. 04013 ◽  
Author(s):  
Rima Septiani Prastika ◽  
A.N. Afandi ◽  
Dwi Prihanto

Recently, electric usages are increasing every year by year in many sectors. In facts, fossil fuels have been fueled to produce electrical energy availability at many power plants which are very limited for the sustainable procurement. Developing and implementing renewable energy sources should be urgently promoted to reduce the dependence on fossil fuels that have been fueled to generate electricity for the long period throughout various power plant combinations. In expectation, the natural source of electrical energy which environmentally friendly and easy to obtain in nature is recommended to explore for the existing energy producers. The natural source of energy can be operated as an alternative power plant to reduce environmental effects and to decrease air contaminants. These works cover those opportunities. In these studies, the method used is a quantitative category with collected primary and secondary data for all evaluations and mitigations. In general, these works are also designed for identifying problems and looking for literature, data collection, processing stage, analysis phase, and final conclusion. The data used is defined in terms of temperature, air pressure, and wind speed. The collected data are supposed to the Purwoharjo City of Banyuwangi Regency, with 10 meters above ground level. Naturally, the wind speed is about 3.5 m/s to 4 m/s and the average temperature is 300° Kelvin. The potentially generated wind energy at a single point of coordinates is around 85.17 Wh.


2019 ◽  
Vol 31 (7) ◽  
pp. 1200-1213 ◽  
Author(s):  
Paolo Iodice ◽  
Massimo Cardone

In the most recent years, renewable sources are becoming increasingly crucial owing to both the stocks of fossil fuels being depleted and environmental problems around the globe. This study describes the environmental assessment of thermal power plant-based trigeneration systems fuelled by renewable energy sources for district heating/cooling system. First, the paper examines the thermal and refrigeration requests of a possible new urban area with electricity, cooling and heating provided by a new trigeneration power system; this study is performed considering a trigeneration plant based on the internal combustion engines fuelled by renewable vegetable oil. Subsequently, a numerical assessment is achieved in order to evaluate the environmental impact on the neighboring area of the trigeneration system. The results of these numerical simulations show that the impact of this power plant on air quality state is not significant in this area. As a result, this kind of trigeneration power system can significantly support the cause of sustainable development and energy efficiency.


2020 ◽  
Vol 10 (15) ◽  
pp. 5206
Author(s):  
Massomeh Alibaba ◽  
Razieh Pourdarbani ◽  
Mohammad Hasan Khoshgoftar Manesh ◽  
Israel Herrera-Miranda ◽  
Iván Gallardo-Bernal ◽  
...  

Today, as fossil fuels are depleted, renewable energy must be used to meet the needs of human beings. One of the renewable energy sources is undoubtedly the solar–geothermal power plant. In this paper, the conventional and advanced, exergo-environmental and exergo-economic analysis of a geothermal–solar hybrid power plant (SGHPP) based on an organic Rankin cycle (ORC) cycle is investigated. In this regard, at first, a conventional analysis was conducted on a standalone geothermal cycle (first mode), as well as a hybrid solar–geothermal cycle (second mode). The results of exergy destruction for simulating the standalone geothermal cycle showed that the ORC turbine with 1050 kW had the highest exergy destruction that was 38% of the total share of destruction. Then, the ORC condenser with 26% of the total share of exergy destruction was in second place. In the hybrid geothermal–solar cycle, the solar panel had the highest environmental impact and about 56% of the total share of exergy destruction. The ORC turbine had about 9% of all exergy destruction. The results of the advanced analysis of exergy in the standalone geothermal cycle showed that the avoidable exergy destruction of the condenser was the highest. In the hybrid geothermal–solar cycle, the solar panel, steam economizer and steam evaporator were ranked first to third from an avoidable exergy destruction perspective. The avoidable exergo-economic destruction of the evaporator and pump were higher than the other components. The hybrid geothermal–solar cycle, steam economizer, solar pane and steam evaporator were ranked first to third, respectively, and they could be modified. The avoidable exergo-environmental destruction of the ORC turbine and the ORC pump were the highest, respectively. In the hybrid geothermal–solar cycle, steam economizers, solar panel and steam evaporators had the highest avoidable exergy destruction, respectively. For the standalone geothermal cycle, the total endogenous exergy destruction and exogenous exergy destruction was 83.61% and 16.39%. Moreover, from an exergo-economic perspective, 89% of the total destruction rate was endogenous and 11% was exogenous. From an exergo-environmental perspective, 88.73% of the destruction rate was endogenous and 11.27% was exogenous. For the hybrid geothermal–solar cycle, the total endogenous and exogenous exergy destruction was 75.08% and 24.92%, respectively. Moreover, 81.82% of the exergo-economic destruction rate was endogenous and 18.82% was exogenous. From an exergo-environmental perspective, 81.19% of the exergy destruction was endogenous and 18.81% was exogenous.


2020 ◽  
pp. 59-79
Author(s):  
Sergey Nikonorov ◽  
Konstantin Papenov ◽  
Denis Sergeyev

Renewable energy is a rapidly developing area of the modern economy. As many experts forecast, global electricity consumption will double by 2050, while the share of renewable sources in energy generation will be 50%. For most states, the main incentives for the development of renewable energy are the ability to eliminate the consumption of fossil fuels and reduce the level of emissions of pollutants, while ensuring sustainable development of the country. At the same time, Russia, which has significant reserves of natural resources, is in no hurry to switch to the use of energy from renewable sources since it is believed that the country’s subsoil can provide it with cheap energy resources for many generations to come. Therefore, introduction of renewable energy sources that are unable to compete with traditional energy without a developed energy infrastructure and established production is impractical. In our study we try to evaluate the efficiency of the introduction of renewable energy sources in the Krasnoyarsk Territory of Russia using the example of the Chinese experience.


Author(s):  
Chelsea Schelly

The electricity grid in the United States may be the largest, most pervasive technological system ever constructed to meet the needs and comforts of human beings (Nye 1997). Although it is less than 150 years old, the electricity infrastructure of this nation is ubiquitous; power lines stretch across deserts, forests, states, highways, and the entire nation in order to provide electricity to residences, businesses, and communities. The electricity carried by these transmission lines is generally produced using fossil fuels (mostly coal; see US Energy Information Administration 2012) and is most commonly generated at a monstrously large facility (a coal plant, a nuclear facility, or a hydropower dam). Our electricity infrastructure was constructed to carry enormous amounts of electricity across vast geographical expanses, based on the massive generation facilities and concentrated fossil fuel based energy sources that defined the system and its use. However, there are increasing concerns regarding the sources of our energy supply. Many of these concerns are related to climate change and how carbon dioxide emissions from burning fossil fuels contribute to rising global temperatures and the climate instability of the planet (Brown 2003). Additional concerns include the host of other environmental damages caused by the use of coal (Epstein et al. 2011), nuclear energy (Slovic et al. 1991), and hydro-electricity (Dincer 1998); other debates involve worries about nearing or reaching peak energy supplies (Brown 2003), energy security (Yergin 2006), and the aging transmission grid (Amin 2003). For a multitude of reasons, many would agree that it’s time to rethink our dependence on fossil fuel based forms of energy and move toward alternative, renewable energy sources (Brown 2003, pp. 116–135). The good news is, the renewable energy industry gets bigger every year, with more energy from renewable sources being produced, sold, and used (Sherwood 2011). Some US states have enacted renewable energy standards requiring that a certain percentage of their electricity supply come from renewable sources. Tax incentives, subsidies, and various forms of rebates, in financially incentivizing renewable energy adoption, also provide evidence that we are indeed moving in the direction of clean, renewable sources of energy.


Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1144 ◽  
Author(s):  
Laurentiu-Mihai Ionescu ◽  
Nicu Bizon ◽  
Alin-Gheorghita Mazare ◽  
Nadia Belu

To ensure the use of energy produced from renewable energy sources, this paper presents a method for consumer planning in the consumer–producer–distributor structure. The proposed planning method is based on the genetic algorithm approach, which solves a cost minimization problem by considering several input parameters. These input parameters are: the consumption for each unit, the time interval in which the unit operates, the maximum value of the electricity produced from renewable sources, and the distribution of energy production per unit of time. A consumer can use the equipment without any planning, in which case he will consume energy supplied by a distributor or energy produced from renewable sources, if it is available at the time he operates the equipment. A consumer who plans his operating interval can use more energy from renewable sources, because the planning is done in the time interval in which the energy produced from renewable sources is available. The effect is that the total cost of energy to the consumer without any planning will be higher than the cost of energy to the consumer with planning, because the energy produced from renewable sources is cheaper than that provided from conventional sources. To be validated, the proposed approach was run on a simulator, and then tested in two real-world case studies targeting domestic and industrial consumers. In both situations, the solution proposed led to a reduction in the total cost of electricity of up to 25%.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Babak Daneshvar Rouyendegh ◽  
Abdullah Yildizbasi ◽  
Ümmühan Z. B. Arikan

The reduction of energy resources and the increase in environmental consciousness have recently increased the interest in renewable energy sources. Wind energy is from renewable energy sources, which are used in many countries. Turkey has a lot alternative wind energy plants thanks to its favorable geographical location. Where the wind power plant is to be established is a complex and important decisive factor. It is very important to select the appropriate wind power plant site to take advantage of wind energy and reduce costs. In this study, we aimed to reach the solution of wind energy plant site selection. For this purpose 4 alternative wind power plant locations have been identified. To evaluate the alternatives, 10 criteria in four dimensions including wind potential, location, cost, and social benefits are selected. Since the Multicriterion Decision Making (MCDM) methods are often used in problem of location selection from past to present, TOPSIS method combined with intuitionistic fuzzy set (IFS) has been used to achieve this goal. The main purpose of the TOPSIS method is to rank the alternatives in the worst way. The IFS are used to reflect approval, rejection, and hesitation of decision makers by dealing with real life uncertainty, imprecision, vagueness, and linguistic human decisions. Finally, a numerical example is applied for wind power plant site selection. In order to demonstrate the effectiveness of IFS, the problem is solved by the Fuzzy TOPSIS method using the same data. Then, the obtained results are compared with the IFS method to show the effectiveness of the proposed method.


Symmetry ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 596 ◽  
Author(s):  
Chia-Nan Wang ◽  
Ming-Hsien Hsueh ◽  
Da-Fu Lin

Fuel and energy are basic resources necessary to meet a country’s socioeconomic development needs; further, countries rich in these resources have the best premise for meeting the inputs of an economic system; however, this also poses many political challenges and threats to national security. Vietnam is located in the Southeast Asian monsoon-humid tropical region and has diverse fuel-energy resources such as coal, petroleum, and hydropower, along with renewable energy sources such as solar energy, biomass energy, and geothermal energy. However, the reality of economic development in recent years shows complex fluctuations in fuel and energy usage, i.e., besides the export of coal and crude oil, Vietnam still has imported processed oil products. To overcome this issue, many hydrogen power plants will be built in the future. This is why we propose fuzzy multicriteria decision-making (FMCDM) for hydrogen power plant site selection in this research. All criteria affecting location selection are determined by experts and literature reviews, and the weight of all criteria are defined by a fuzzy analytic hierarchy process (FAHP). The technique for order of preference by similarity to an ideal solution (TOPSIS) is a multicriteria decision analysis method, which is used for ranking potential locations in the final stage. As a result, the decision-making unit, DMU010 (DMU010), has become the optimal solution for building hydrogen power plants in Vietnam. A multicriteria decision-making (MCDM) model for hydrogen power plant site selection in Vietnam under fuzzy environment conditions is a contribution of this study. This research also provides useful tools for other types of renewable energies in Vietnam and other countries.


Sign in / Sign up

Export Citation Format

Share Document