cytoplasmic kinase domain
Recently Published Documents


TOTAL DOCUMENTS

9
(FIVE YEARS 4)

H-INDEX

5
(FIVE YEARS 0)

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Bruk Mensa ◽  
Nicholas F Polizzi ◽  
Kathleen S Molnar ◽  
Andrew M Natale ◽  
Thomas Lemmin ◽  
...  

Transmembrane signaling proteins couple extracytosolic sensors to cytosolic effectors. Here, we examine how binding of Mg2+ to the sensor domain of an E. coli two component histidine kinase (HK), PhoQ, modulates its cytoplasmic kinase domain. We use cysteine-crosslinking and reporter-gene assays to simultaneously and independently probe the signaling state of PhoQ's sensor and autokinase domains in a set of over 30 mutants. Strikingly, conservative single-site mutations distant from the sensor or catalytic site strongly influence PhoQ's ligand-sensitivity as well as the magnitude and direction of the signal. Data from 35 mutants are explained by a semi-empirical three-domain model in which the sensor, intervening HAMP, and catalytic domains can adopt kinase-promoting or inhibiting conformations that are in allosteric communication. The catalytic and sensor domains intrinsically favor a constitutively 'kinase-on' conformation, while the HAMP domain favors the 'off' state; when coupled, they create a bistable system responsive to physiological concentrations of Mg2+. Mutations alter signaling by locally modulating domain intrinsic equilibrium constants and interdomain couplings. Our model suggests signals transmit via interdomain allostery rather than propagation of a single concerted conformational change, explaining the diversity of signaling structural transitions observed in individual HK domains.


2021 ◽  
Author(s):  
Bruk Mensa ◽  
Nicholas F Polizzi ◽  
Kathleen S Molnar ◽  
Andrew M Natale ◽  
Thomas Lemmin ◽  
...  

Transmembrane signaling proteins couple extracytosolic sensors to cytosolic effectors. Here, we examine how binding of Mg2+ to the sensor domain of an E. coli two component histidine kinase (HK), PhoQ, modulates its cytoplasmic kinase domain. We use cysteine crosslinking and reporter-gene assays to simultaneously and independently probe the signaling state of PhoQ’s sensor and autokinase domains in a set of over 30 mutants. Strikingly, conservative single-site mutants distant from the sensor or catalytic site strongly influence PhoQ’s ligand-sensitivity as well as the magnitude and direction of the signal, endowing diverse signaling characteristics without need for epistasis. Data from 35 mutants are explained by a semi-empirical 3-domain model in which the sensor, intervening HAMP, and catalytic domains can adopt kinase-promoting or inhibiting conformations, that are in allosteric communication. The catalytic and sensor domains intrinsically favor a constitutively ‘kinase-on’ conformation, while the HAMP favors the ‘off’ state; when coupled, they create a bistable system responsive to physiological [Mg2+]. Mutants alter signaling by locally modulating these intrinsic equilibrium constants and couplings. Our model suggests signals transmit via interdomain allostery rather than propagation of a single concerted conformational change, explaining the diversity of signaling structural transitions observed in individual HK domains.


2020 ◽  
Author(s):  
Wen R.H. Huang ◽  
Christiaan Schol ◽  
Sergio Landeo Villanueva ◽  
Renze Heidstra ◽  
Matthieu H.A.J. Joosten

AbstractThe first layer of plant immunity is formed by pattern recognition receptors (PRRs) that are present at the cell surface and perceive extracellular immunogenic patterns. Receptor-like proteins (RLPs), such as the tomato (Solanum lycopersicum) PRR Cf-4 that provides resistance to the fungus Cladosporium fulvum secreting the matching avirulence factor Avr4, have an extracellular receptor domain consisting of leucine-rich repeats, but lack a cytoplasmic kinase domain for downstream signaling. RLPs constitutively interact with the receptor-like kinase SUPPRESSOR OF BIR1-1 (SOBIR1), thereby providing the receptor with a kinase domain, and recruit the co-receptor BRI-ASSOCIATED KINASE 1 (BAK1) upon their activation by a matching ligand. Trans-phosphorylation events, which can take place between the kinase domains of SOBIR1 and BAK1 after their association with the RLP, are thought to initiate downstream defense signaling. Currently, our knowledge on RLP/SOBIR1/BAK1-mediated defence initiation is limited and to understand the role of SOBIR1 in RLP function, we knocked out SOBIR1 and its close homolog SOBIR1-like in the model plant Nicotiana benthamiana, as well as in transgenic N. benthamiana stably expressing Cf-4. We observed that Cf-4 function is completely abolished in the knock-out mutants, and we show that these plants can be used to perform transient complementation studies with SOBIR1 mutants. Thereby, these mutants are an important tool to study the fundamentals of plant immunity mediated by RLPs.


Author(s):  
Hong Chen ◽  
Yanqiong Kong ◽  
Jia Chen ◽  
Lan Li ◽  
Xiushan Li ◽  
...  

Transmembrane kinases (TMKs) are members of the plant receptor-like kinase (RLK) family. TMKs are characterized by an extracellular leucine-rich-repeat (LRR) domain, a single transmembrane region and a cytoplasmic kinase domain. TMKs have been shown to act as critical modulators of cell expansion and cell proliferation. Here, the crystal structure of the extracellular domain of TMK3 (TMK3-ECD) was determined to a resolution of 2.06 Å, with an R work of 17.69% and an R free of 20.58%. Similar to the extracellular domain of TMK1, the TMK3-ECD structure contains two solenoids with 13 LRRs and a non-LRR region (316–364) between the tenth and 11th LRRs. A comparison of TMK3-ECD with other LRR-RLKs that contain a non-LRR region indicates that the non-LRR region plays a critical role in structural integrity and may contribute to ligand interactions. The non-LRR region of TMK3-ECD is characterized by two disulfide bonds that may have critical biological implications.


2018 ◽  
Vol 31 (1) ◽  
pp. 75-85 ◽  
Author(s):  
Jinbin Wu ◽  
Aranka M. van der Burgh ◽  
Guozhi Bi ◽  
Lisha Zhang ◽  
James R. Alfano ◽  
...  

Receptor-like proteins (RLPs) and receptor-like kinases (RLKs) are cell-surface receptors that are essential for detecting invading pathogens and subsequent activation of plant defense responses. RLPs lack a cytoplasmic kinase domain to trigger downstream signaling leading to host resistance. The RLK SOBIR1 constitutively interacts with the tomato RLP Cf-4, thereby providing Cf-4 with a kinase domain. SOBIR1 is required for Cf-4–mediated resistance to strains of the fungal tomato pathogen Cladosporium fulvum that secrete the effector Avr4. Upon perception of this effector by the Cf-4/SOBIR1 complex, the central regulatory RLK SOMATIC EMBRYOGENESIS RECEPTOR KINASE 3a (SERK3a) is recruited to the complex and defense signaling is triggered. SOBIR1 is also required for RLP-mediated resistance to bacterial, fungal ,and oomycete pathogens, and we hypothesized that SOBIR1 is targeted by effectors of such pathogens to suppress host defense responses. In this study, we show that Pseudomonas syringae pv. tomato DC3000 effector AvrPto interacts with Arabidopsis SOBIR1 and its orthologs of tomato and Nicotiana benthamiana, independent of SOBIR1 kinase activity. Interestingly, AvrPto suppresses Arabidopsis SOBIR1-induced cell death in N. benthamiana. Furthermore, AvrPto compromises Avr4-triggered cell death in Cf-4-transgenic N. benthamiana, without affecting Cf-4/SOBIR1/SERK3a complex formation. Our study shows that the RLP coreceptor SOBIR1 is targeted by a bacterial effector, which results in compromised defense responses.


Open Biology ◽  
2014 ◽  
Vol 4 (6) ◽  
pp. 140023 ◽  
Author(s):  
Jiwei Liu ◽  
Jianguo Yang ◽  
Jin Wen ◽  
Yun Yang ◽  
Xiaolu Wei ◽  
...  

Membrane-associated histidine kinases (HKs) in two-component systems respond to environmental stimuli by autophosphorylation and phospho-transfer. HK typically contains a periplasmic sensor domain that regulates the cytoplasmic kinase domain through a conserved cytoplasmic linker. How signal is transduced from the ligand-binding site across the membrane barrier remains unclear. Here, we analyse two linker regions of a typical HK, DctB. One region connects the first transmembrane helix with the periplasmic Per-ARNT-Sim domains, while the other one connects the second transmembrane helix with the cytoplasmic kinase domains. We identify a leucine residue in the first linker region to be essential for the signal transduction and for maintaining the delicate balance of the dimeric interface, which is key to its activities. We also show that the other linker, belonging to the S-helix coiled-coil family, plays essential roles in signal transduction inside the cell. Furthermore, by combining mutations with opposing activities in the two regions, we show that these two signalling transduction elements are integrated to produce a combined effect on the final activity of DctB.


Blood ◽  
1996 ◽  
Vol 87 (8) ◽  
pp. 3117-3123 ◽  
Author(s):  
X Piao ◽  
A Bernstein

The murine W and Steel loci encode the Kit receptor tyrosine kinase and its ligand, Steel factor, respectively. Loss of function mutations at either the W or Sl loci lead to a variety of pleiotropic developmental defects, including mast cell deficiency and severe macrocytic anemia. In addition to these loss-of-function mutations, gain-of-function mutations in c-kit, leading to constitutive activation of the Kit receptor, have also been identified in both rodent and human mastocytomas. In this study, we have examined the transforming potential and biologic effects of a point mutation that results in substitution of the aspartic acid at codon 814 in the cytoplasmic kinase domain to tyrosine (D814Y) by introducing either wild-type (Kit) or mutant KitD814Y (KDY) cDNA into an interleukin-3-dependent mast cell line IC2. Stimulation of cells expressing the wild-type Kit receptor (IC2/Kit) with Steel factor in vitro resulted in a short-term growth response, whereas IC2/KDY cells were capable of sustained proliferation in a ligand-independent manner. In addition, expression of KDY resulted in the oncogenic transformation of IC2 cells, as determined by colony formation in vitro in the absence of exogenous growth factors and the formation of mastocytomas in vivo in syngeneic DBA/2 mice. Surprisingly, KDY expression in IC2 cells triggered dramatic changes in cell size and the extent of granulation. In addition, KDY induced the expression of mouse mast cell protease-4 (MMCP-4) and MMCP-6. In contrast, neither of these molecular or cellular changes was observed in IC2/Kit cells treated with Steel factor. These results show that the D814Y mutation in the cytoplasmic kinase domain of the Kit receptor induces ligand-independent mast cell growth in vitro, tumorigenicity in vivo, and mast cell differentiation.


Sign in / Sign up

Export Citation Format

Share Document