scholarly journals A point mutation in the catalytic domain of c-kit induces growth factor independence, tumorigenicity, and differentiation of mast cells

Blood ◽  
1996 ◽  
Vol 87 (8) ◽  
pp. 3117-3123 ◽  
Author(s):  
X Piao ◽  
A Bernstein

The murine W and Steel loci encode the Kit receptor tyrosine kinase and its ligand, Steel factor, respectively. Loss of function mutations at either the W or Sl loci lead to a variety of pleiotropic developmental defects, including mast cell deficiency and severe macrocytic anemia. In addition to these loss-of-function mutations, gain-of-function mutations in c-kit, leading to constitutive activation of the Kit receptor, have also been identified in both rodent and human mastocytomas. In this study, we have examined the transforming potential and biologic effects of a point mutation that results in substitution of the aspartic acid at codon 814 in the cytoplasmic kinase domain to tyrosine (D814Y) by introducing either wild-type (Kit) or mutant KitD814Y (KDY) cDNA into an interleukin-3-dependent mast cell line IC2. Stimulation of cells expressing the wild-type Kit receptor (IC2/Kit) with Steel factor in vitro resulted in a short-term growth response, whereas IC2/KDY cells were capable of sustained proliferation in a ligand-independent manner. In addition, expression of KDY resulted in the oncogenic transformation of IC2 cells, as determined by colony formation in vitro in the absence of exogenous growth factors and the formation of mastocytomas in vivo in syngeneic DBA/2 mice. Surprisingly, KDY expression in IC2 cells triggered dramatic changes in cell size and the extent of granulation. In addition, KDY induced the expression of mouse mast cell protease-4 (MMCP-4) and MMCP-6. In contrast, neither of these molecular or cellular changes was observed in IC2/Kit cells treated with Steel factor. These results show that the D814Y mutation in the cytoplasmic kinase domain of the Kit receptor induces ligand-independent mast cell growth in vitro, tumorigenicity in vivo, and mast cell differentiation.

2019 ◽  
Vol 116 (50) ◽  
pp. 25322-25328 ◽  
Author(s):  
Yi Liu ◽  
Xiaopin Ma ◽  
Hisashi Fujioka ◽  
Jun Liu ◽  
Shengdi Chen ◽  
...  

Loss-of-function mutations in DJ-1 are associated with autosomal recessive early onset Parkinson’s disease (PD), yet the underlying pathogenic mechanism remains elusive. Here we demonstrate that DJ-1 localized to the mitochondria-associated membrane (MAM) both in vitro and in vivo. In fact, DJ-1 physically interacts with and is an essential component of the IP3R3-Grp75-VDAC1 complexes at MAM. Loss of DJ-1 disrupted the IP3R3-Grp75-VDAC1 complex and led to reduced endoplasmic reticulum (ER)-mitochondria association and disturbed function of MAM and mitochondria in vitro. These deficits could be rescued by wild-type DJ-1 but not by the familial PD-associated L166P mutant which had demonstrated reduced interaction with IP3R3-Grp75. Furthermore, DJ-1 ablation disturbed calcium efflux-induced IP3R3 degradation after carbachol treatment and caused IP3R3 accumulation at the MAM in vitro. Importantly, similar deficits in IP3R3-Grp75-VDAC1 complexes and MAM were found in the brain of DJ-1 knockout mice in vivo. The DJ-1 level was reduced in the substantia nigra of sporadic PD patients, which was associated with reduced IP3R3-DJ-1 interaction and ER-mitochondria association. Together, these findings offer insights into the cellular mechanism in the involvement of DJ-1 in the regulation of the integrity and calcium cross-talk between ER and mitochondria and suggests that impaired ER-mitochondria association could contribute to the pathogenesis of PD.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1707-1707
Author(s):  
Giovanni Migliaccio ◽  
Barbara Ghinassi ◽  
Lucia Centurione ◽  
Maria Zingariello ◽  
Lucia Bianchi ◽  
...  

Abstract Megakaryocytopoiesis is regulated by extrinsic (interaction of the growth factor thrombopoietin, TPO with its receptor Mpl) and intrinsic (interaction between the trascription factors GATA-1 and Fog-1) factors. The observation that mice impaired for GATA-1 expression (i.e. harbouring the GATA-1low mutation) are defective not only in megakaryocyte maturation but also in mast cell differentiation (Migliaccio et al. J Exp Med197:281, 2003), led us to investigate whether TPO might control mast cell differentiation as well. We first observed that mice genetically unable to responde to TPO (Mplnull mice) express in the connective tissues 5 times more mast cells than their normal littermates. Then, we analysed the effects on mast cell differentiation of in vivo treatment with TPO. Normal mice, and their GATA-1low littermates, were injected i.p. with TPO (100 μg/kg/day per 5 days, kindly provided by Kirin Brewery, Japan) and the number of immature (Toluidinepos) and mature (AlcianBlue/Saphraninepos) mast cells present in the connective tissues of the animals, as well as the frequency of GATA-1pos and TUNELpos mast cells, was evaluated 14 days after treatment. In wild-type animals, TPO reduced the presence of GATA-1 in mast cells (by immuno-histochemistry) and increased the number of immature cells (from 320±28 to 852±60) and of those undergoing apoptosis (from 16±1 to 600±43). In contrast, in GATA-1low animals, TPO-treatment induced the expression of GATA-1 in mast cells while decreased the number of immature cells (from 1100±72 to 427±29) as well as that of apoptotic cells (from 600±45 to 60±2). The role of TPO on mast cell differentiation were further confirmed by the analysis of the effects exerted by the growth factor on in vitro differentiation of bone marrow derived mast cells (BMMC). In these experiments, wild type bone marrow and spleen cells were cultured for 21 days with SCF and IL-3 with or without TPO and BMMC differentiation measured on the basis of the number of cells expressing the phenotype c-kithigh/CD34high and FcεRIpos. In cultures stimulated with SCF and IL-3, all the cells expressed the phenotype c-kithigh/CD34high and FcεRIpos. In contrast, in cultures supplemented also with SCF, IL-3 and TPO, only 25% of the cells were c-kithigh/CD34high and none of them was FcεRIpos. These results establish a role for TPO in the control of mast cell differentiation (possibly by modulating the GATA-1 content of the cells) and unveil further similarities between the mechanism(s) controlling megakaryocyte and mast cell differentiation.


Development ◽  
1994 ◽  
Vol 120 (12) ◽  
pp. 3595-3603 ◽  
Author(s):  
C.V. Cabrera ◽  
M.C. Alonso ◽  
H. Huikeshoven

The pattern of adult sensilla in Drosophila is established by the dosage-sensitive interaction of two antagonistic groups of genes. Sensilla development is promoted by members of the achaete-scute complex and the daughterless gene whereas it is suppressed by whereas extramacrochaete (emc) and hairy. All these genes encode helix-loop-helix proteins. The products of the achaete-scute complex and daughterless interact to form heterodimers able to activate transcription. In this report, we show that (1) extra-macrochaete forms heterodimers with the achaete, scute, lethal of scute and daughterless products; (2) extramacrochaete inhibits DNA-binding of Achaete, Scute and Lethal of Scute/Daughterless heterodimers and Daughterless homodimers and (3) extramacrochaete inhibits transcription activation by heterodimers in a yeast assay system. In addition, we have studied the expression patterns of scute in wild-type and extramacrochaete mutant imaginal discs. Expression of scute RNA during imaginal development occurs in groups of cells, but high levels of protein accumulate in the nuclei of only a subset of the RNA-expressing cells. The pattern is dynamic and results in a small number of protein-containing cells that correspond to sensillum precursors. extramacrochaete loss-of-function alleles develop extra sensilla and correspondingly display a larger number of cells with scute protein. These cells appear to arise from those that in the wild type already express scute RNA; hence, extramacrochaete is a repressor of scute function whose action may take place post-transcriptionally.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 394-394
Author(s):  
Lurong Lian ◽  
Yanfeng Wang ◽  
Xinsheng Chen ◽  
Tami Bach ◽  
Laurie Lenox ◽  
...  

Abstract Pleckstrin is a 40 kDa phosphoprotein containing amino- and carboxyl-terminal Pleckstrin Homology (PH) domains separated by a DEP domain. Pleckstrin’s expression is restricted to platelets and leukocytes, and represents approximately 1% of total cellular protein within these cells. Following platelet and leukocyte activation, PKC rapidly phosphorylates pleckstrin inducing it to bind membrane bound phospholipids such as phosphatidylinositol 4,5 bisphosphate (PIP2). Heterologously expressed phosphorylated pleckstrin colocalized with integrins and induces cytoskeletal reorganization. To better define the role of pleckstrin in vivo, we introduced a loss-of-function mutation into the murine pleckstrin gene. Pleckstrin-null mice were present in offspring at a frequency consistent with a Mendelian inheritance pattern. Adult pleckstrin −/− mice had 32% lower platelet counts than their littermates, but exhibited no spontaneous hemorrhage. Given the role of PKC and phospholipid second messengers on cytoskeletal dynamics, and our observations of pleckstrin overexpression in cell lines, we analyzed whether loss of pleckstrin affected cell spreading. Pleckstrin −/− platelets spread extremely poorly upon immobilized fibrinogen, and rarely exhibited broad membrane extensions. Granulocytes from pleckstrin −/− mice also have a spreading defect, as well as impaired ability to generate reactive oxygen species in the response to TNFα. Knockout B-cells, CD4-T-cells, and CD8-T-cells all migrated approximately 30% as efficiently as wild type cells in response to a gradient of SDF-1α in a transwell assay. These data suggest that loss of pleckstrin causes cytoskeletal defects in cells of multiple hematopoietic lineages. Analyzing whether this caused a functional defect, we found that pleckstrin −/− platelets exhibited a 22% dense- and 24% alpha-granule exocytosis defect, and a 35% defect in thrombin-induced calcium entry. In spite of these abnormalities, platelets changed shape and aggregated normally after stimulation with thrombin, ADP, or collagen in vitro. Pleckstrin knockout platelets did have a markedly impaired aggregation response following exposure to the PKC stimulant, PMA. This suggested that pleckstrin is a critical effector for PKC-mediated aggregation, but another pathway is able to compensate for this loss of pleckstrin following agonist stimulation. We reasoned that the alternative pathway might also utilize PIP2-dependent second messengers. Since the phosphorylation of PIP2 by PI3K generates second messengers that also contribute to platelet aggregation, we tested whether PI3K compensated for the loss of pleckstrin. We found that the PI3K inhibitor, LY294002 profoundly impaired the aggregation of pleckstrin knockout platelets in response to stimulation of the thrombin receptor. In contrast, the PI3K inhibitor minimally affected wild type platelets. This demonstrates that second messengers generated by PI3K are able to compensate for loss of pleckstrin. This also demonstrates that thrombin-induced platelet aggregation can be mediated by one of two parallel pathways, one involving PKC and pleckstrin, and the other involving PI3K. Together, our results show that pleckstrin is an essential component of PKC-mediated platelet activation and signals directed to the cytoskeleton.


2017 ◽  
Vol 28 (12) ◽  
pp. 1591-1600 ◽  
Author(s):  
Yohei Matsunaga ◽  
Hyundoo Hwang ◽  
Barbara Franke ◽  
Rhys Williams ◽  
McKenna Penley ◽  
...  

Muscle sarcomeres contain giant polypeptides composed of multiple immunoglobulin and fibronectin domains and one or two protein kinase domains. Although binding partners for a number of this family’s kinase domains have been identified, the catalytic necessity of these kinase domains remains unknown. In addition, various members of this kinase family are suspected pseudokinases with no or little activity. Here we address catalytic necessity for the first time, using the prototypic invertebrate representative twitchin (UNC-22) from Caenorhabditis elegans. In in vitro experiments, change of a conserved lysine (K) that is involved in ATP coordination to alanine (A) resulted in elimination of kinase activity without affecting the overall structure of the kinase domain. The same mutation, unc-22(sf21), was generated in the endogenous twitchin gene. The unc-22(sf21) worms have well-organized sarcomeres. However, unc-22(sf21) mutants move faster than wild-type worms and, by optogenetic experiments, contract more. Wild-type nematodes exhibited greater competitive fitness than unc-22(sf21) mutants. Thus the catalytic activity of twitchin kinase has a role in vivo, where it inhibits muscle activity and is likely maintained by selection.


2020 ◽  
Author(s):  
Jinlei Zhao ◽  
Shahista Nisa ◽  
Michael S. Donnenberg

AbstractType IV pili (T4Ps) are multifunctional protein fibers found in many bacteria and archaea. All T4P systems have an extension ATPase, which provides the energy required to push structural subunits out of the membrane. We previously reported that the BfpD T4P ATPase from enteropathogenic E. coli (EPEC) has the expected hexameric structure and ATPase activity, the latter enhanced by the presence of the N-terminal cytoplasmic domains of its partner proteins BfpC and BfpE. In this study, we further investigated the kinetics of the BfpD ATPase. Despite high purity of the proteins, the reported enhanced ATPase activity was found to be from (an) ATPase(s) contaminating the N-BfpC preparation. Furthermore, although two mutations in highly conserved bfpD sites led to loss of function in vivo, the purified mutant proteins retained some ATPase activity, albeit less than the wild-type protein. Therefore, the observed ATPase activity of BfpD was also affected by (a) contaminating ATPase(s). Expression of the mutant bfpD alleles did not interfere with BfpD function in bacteria that also expressed wild-type BfpD. However, a similar mutation of bfpF, which encodes the retraction ATPase, blocked the function of wild-type BfpF when both were present. These results highlight similarities and differences in function and activity of T4P extension and retraction ATPases in EPEC.


2016 ◽  
Vol 113 (39) ◽  
pp. 11010-11015 ◽  
Author(s):  
Jun Zhang ◽  
Jinshan Ella Lin ◽  
Chinchu Harris ◽  
Fernanda Campos Mastrotti Pereira ◽  
Fan Wu ◽  
...  

Tight homeostatic regulation of the phytohormone auxin [indole-3-acetic acid (IAA)] is essential to plant growth. Auxin biosynthetic pathways and the processes that inactivate auxin by conjugation to amino acids and sugars have been thoroughly characterized. However, the enzyme that catalyzes oxidation of IAA to its primary catabolite 2-oxindole-3-acetic acid (oxIAA) remains uncharacterized. Here, we show that DIOXYGENASE FOR AUXIN OXIDATION 1 (DAO1) catalyzes formation of oxIAA in vitro and in vivo and that this mechanism regulates auxin homeostasis and plant growth. Null dao1-1 mutants contain 95% less oxIAA compared with wild type, and complementation of dao1 restores wild-type oxIAA levels, indicating that DAO1 is the primary IAA oxidase in seedlings. Furthermore, dao1 loss of function plants have altered morphology, including larger cotyledons, increased lateral root density, delayed sepal opening, elongated pistils, and reduced fertility in the primary inflorescence stem. These phenotypes are tightly correlated with DAO1 spatiotemporal expression patterns as shown by DAO1pro:β-glucuronidase (GUS) activity and DAO1pro:YFP-DAO1 signals, and transformation with DAO1pro:YFP-DAO1 complemented the mutant phenotypes. The dominant dao1-2D mutant has increased oxIAA levels and decreased stature with shorter leaves and inflorescence stems, thus supporting DAO1 IAA oxidase function in vivo. A second isoform, DAO2, is very weakly expressed in seedling root apices. Together, these data confirm that IAA oxidation by DAO1 is the principal auxin catabolic process in Arabidopsis and that localized IAA oxidation plays a role in plant morphogenesis.


2011 ◽  
Vol 434 (2) ◽  
pp. 211-217 ◽  
Author(s):  
Michail Nomikos ◽  
Khalil Elgmati ◽  
Maria Theodoridou ◽  
Brian L. Calver ◽  
Bevan Cumbes ◽  
...  

A male infertility-linked human PLCζ (phospholipase Cζ) mutation introduced into mouse PLCζ completely abolishes both in vitro PIP2 (phosphatidylinositol 4,5-bisphosphate) hydrolysis activity and the ability to trigger in vivo Ca2+ oscillations in mouse eggs. Wild-type PLCζ initiated a normal pattern of Ca2+ oscillations in eggs in the presence of 10-fold higher mutant PLCζ, suggesting that infertility is not mediated by a dominant-negative mechanism.


Blood ◽  
2007 ◽  
Vol 109 (11) ◽  
pp. 5043-5048 ◽  
Author(s):  
Michelle B. Bowie ◽  
David G. Kent ◽  
Michael R. Copley ◽  
Connie J. Eaves

Abstract Fetal hematopoietic stem cells (HSCs) regenerate daughter HSCs in irradiated recipients more rapidly than do adult HSCs. However, both types of HSCs divide in vitro with the same cell-cycle transit times, suggesting different intrinsically determined self-renewal activities. To investigate the mechanism(s) underlying these differences, we compared fetal and adult HSC responses to Steel factor (SF) stimulation in vitro and in vivo. These experiments were undertaken with both wild-type cells and W41/W41 cells, which have a functionally deficient c-kit kinase. In vitro, fetal HSC self-renewal divisions, like those of adult HSCs, were found to be strongly dependent on c-kit activation, but the fetal HSCs responded to much lower SF concentrations in spite of indistinguishable levels of c-kit expression. Fetal W41/W41 HSCs also mimicked adult wild-type HSCs in showing the same reduced rate of amplification in irradiated adult hosts (relative to fetal wild-type HSCs). Assessment of various proliferation and signaling gene transcripts in fetal and adult HSCs self-renewing in vitro revealed a singular difference in Ink4c expression. We conclude that the ability of fetal HSCs to execute symmetric self-renewal divisions more efficiently than adult HSCs in vivo may be dependent on specific developmentally regulated signals that act downstream of the c-kit kinase.


2004 ◽  
Vol 24 (18) ◽  
pp. 8195-8209 ◽  
Author(s):  
Eugenia Trushina ◽  
Roy B. Dyer ◽  
John D. Badger ◽  
Daren Ure ◽  
Lars Eide ◽  
...  

ABSTRACT Recent data in invertebrates demonstrated that huntingtin (htt) is essential for fast axonal trafficking. Here, we provide direct and functional evidence that htt is involved in fast axonal trafficking in mammals. Moreover, expression of full-length mutant htt (mhtt) impairs vesicular and mitochondrial trafficking in mammalian neurons in vitro and in whole animals in vivo. Particularly, mitochondria become progressively immobilized and stop more frequently in neurons from transgenic animals. These defects occurred early in development prior to the onset of measurable neurological or mitochondrial abnormalities. Consistent with a progressive loss of function, wild-type htt, trafficking motors, and mitochondrial components were selectively sequestered by mhtt in human Huntington's disease-affected brain. Data provide a model for how loss of htt function causes toxicity; mhtt-mediated aggregation sequesters htt and components of trafficking machinery leading to loss of mitochondrial motility and eventual mitochondrial dysfunction.


Sign in / Sign up

Export Citation Format

Share Document