neurodegenerative dementias
Recently Published Documents


TOTAL DOCUMENTS

137
(FIVE YEARS 57)

H-INDEX

23
(FIVE YEARS 6)

2021 ◽  
Vol 17 (S5) ◽  
Author(s):  
Michael Brickhouse ◽  
Lindsay Hanford ◽  
Nicole Carvalho ◽  
Mark C. Eldaief ◽  
Ross Mair ◽  
...  

2021 ◽  
Vol 429 ◽  
pp. 118972
Author(s):  
Federico Emanuele Pozzi ◽  
Lucio Tremolizzo ◽  
Giuseppe Fiamingo ◽  
Ildebrando Appollonio ◽  
Carlo Ferrarese

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Bin Jiao ◽  
Hui Liu ◽  
Lina Guo ◽  
Xuewen Xiao ◽  
Xinxin Liao ◽  
...  

AbstractNeurodegenerative dementias are a group of diseases with highly heterogeneous pathology and complicated etiology. There exist potential genetic component overlaps between different neurodegenerative dementias. Here, 1795 patients with neurodegenerative dementias from South China were enrolled, including 1592 with Alzheimer’s disease (AD), 110 with frontotemporal dementia (FTD), and 93 with dementia with Lewy bodies (DLB). Genes targeted sequencing analysis were performed. According to the American College of Medical Genetics (ACMG) guidelines, 39 pathogenic/likely pathogenic (P/LP) variants were identified in 47 unrelated patients in 14 different genes, including PSEN1, PSEN2, APP, MAPT, GRN, CHCHD10, TBK1, VCP, HTRA1, OPTN, SQSTM1, SIGMAR1, and abnormal repeat expansions in C9orf72 and HTT. Overall, 33.3% (13/39) of the variants were novel, the identified P/LP variants were seen in 2.2% (35/1592) and 10.9% (12/110) of AD and FTD cases, respectively. The overall molecular diagnostic rate was 2.6%. Among them, PSEN1 was the most frequently mutated gene (46.8%, 22/47), followed by PSEN2 and APP. Additionally, the age at onset of patients with P/LP variants (51.4 years), ranging from 30 to 83 years, was ~10 years earlier than those without P/LP variants (p < 0.05). This study sheds insight into the genetic spectrum and clinical manifestations of neurodegenerative dementias in South China, further expands the existing repertoire of P/LP variants involved in known dementia-associated genes. It provides a new perspective for basic research on genetic pathogenesis and novel guiding for clinical practice of neurodegenerative dementia.


Author(s):  
Faheem Arshad ◽  
Feba Varghese ◽  
Avanthi Paplikar ◽  
Yashwanth Gangadhar ◽  
Subasree Ramakrishnan ◽  
...  

<b><i>Objective:</i></b> In the background of an emerging role for immune dysregulation in neurodegenerative dementias, this study aimed to investigate the relationship between systemic autoimmunity and dementia. The objective was to study the frequency and profile of disease-specific autoantibodies in Alzheimer’s dementia (AD), frontotemporal dementia (FTD), and dementia with Lewy bodies (DLB). <b><i>Methods:</i></b> Immunological testing was performed in a large cohort of neurodegenerative dementia diagnosed based on standard clinical and imaging criteria. Patients were evaluated for the presence of autoantibodies specific for systemic autoimmune diseases that included anti-extractable nuclear antibody profile, rheumatoid factor antibody (RA), perinuclear anti-neutrophil cytoplasmic antibody (p-ANCA), and cytoplasmic anti-neutrophil cytoplasmic antibody (c-ANCA) in serum. <b><i>Results:</i></b> Of 174 patients with degenerative dementia (FTD = 114, AD = 53, and DLB = 7) evaluated with immunological testing, 18.9% (<i>n</i> = 33) were seropositive for autoantibodies. The common antibodies detected were anti-Scl-70 (25%), anti-Ro-52 (18.7%), anti-nRNP-Sm (12.5%), and anti-CENP-B (9.3%). There were no significant systemic complaints in the majority of patients. A wider range of antibodies were positive in FTD compared to AD and DLB. While no difference was observed in the mean age, sex, or duration of illness between seropositive and negative patients, family history of dementia was more frequent among seronegative patients. <b><i>Conclusion:</i></b> Our findings indicate an emerging role for immune dysregulation in patients with classical neurodegenerative dementias, especially those with FTD. These autoantibodies could play a role in immune degradation of protein aggregates that characterize neurodegeneration. Study findings emphasize the need to explore the complex relationship between systemic autoimmunity and neurodegenerative dementia.


2021 ◽  
Vol 13 ◽  
Author(s):  
Nelson de Oliveira Manzanza ◽  
Lucia Sedlackova ◽  
Raj N. Kalaria

Lewy Body Disorders (LBDs) lie within the spectrum of age-related neurodegenerative diseases now frequently categorized as the synucleinopathies. LBDs are considered to be among the second most common form of neurodegenerative dementias after Alzheimer's disease. They are progressive conditions with variable clinical symptoms embodied within specific cognitive and behavioral disorders. There are currently no effective treatments for LBDs. LBDs are histopathologically characterized by the presence of abnormal neuronal inclusions commonly known as Lewy Bodies (LBs) and extracellular Lewy Neurites (LNs). The inclusions predominantly comprise aggregates of alpha-synuclein (aSyn). It has been proposed that post-translational modifications (PTMs) such as aSyn phosphorylation, ubiquitination SUMOylation, Nitration, o-GlcNacylation, and Truncation play important roles in the formation of toxic forms of the protein, which consequently facilitates the formation of these inclusions. This review focuses on the role of different PTMs in aSyn in the pathogenesis of LBDs. We highlight how these PTMs interact with aSyn to promote misfolding and aggregation and interplay with cell membranes leading to the potential functional and pathogenic consequences detected so far, and their involvement in the development of LBDs.


Author(s):  
Antonio Longobardi ◽  
Luisa Benussi ◽  
Roland Nicsanu ◽  
Sonia Bellini ◽  
Clarissa Ferrari ◽  
...  

Alzheimer’s disease (AD), frontotemporal dementia (FTD), and dementia with Lewy bodies (DLB) are the three major neurodegenerative dementias. In this study, we provide evidence that an alteration in extracellular vesicles (EVs) release is common across the three most common neurodegenerative dementias, AD, DLB, and FTD. Specifically, we analyzed plasma EVs in three groups of patients affected by AD, DLB, and FTD, and we found a significant reduction in EVs concentration and larger EVs size in all patient groups. We then investigated whether the loss of neurotrophic factors is also a common pathogenic mechanism among FTD, DLB, and AD, and if levels of neurotrophic factors might affect EVs release. Plasma levels of progranulin and cystatin C (CysC) were partially altered; however, taking together all variables significantly associated with the diagnostic groups only EVs size and concentration were able to distinguish patients from controls. The diagnostic performance of these two EVs parameters together (ratio) was high, with a sensitivity of 83.3% and a specificity of 86.7%, able to distinguish patients from controls but not to differentiate the different forms of dementias. Among the candidate neurotrophic factors, only CysC levels were associated with EVs concentration. Our study suggests that an alteration in the intercellular communication mediated by EVs might be a common molecular pathway underlying neurodegenerative dementias. The identification of shared disease mechanisms is of pivotal importance to develop treatments to delay disease progression. To this aim, further studies investigating plasma EVs size and concentration as early biomarkers of dementia are required.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Inga Zerr ◽  
Anna Villar-Piqué ◽  
Peter Hermann ◽  
Matthias Schmitz ◽  
Daniela Varges ◽  
...  

Abstract Background Blood neurofilament light (Nfl) and total-tau (t-tau) have been described to be increased in several neurological conditions, including prion diseases and other neurodegenerative dementias. Here, we aim to determine the accuracy of plasma Nfl and t-tau in the differential diagnosis of neurodegenerative dementias and their potential value as prognostic markers of disease severity. Methods Plasma Nfl and t-tau were measured in healthy controls (HC, n = 70), non-neurodegenerative neurological disease with (NND-Dem, n = 17) and without dementia syndrome (NND, n = 26), Alzheimer’s disease (AD, n = 44), Creutzfeldt-Jakob disease (CJD, n = 83), dementia with Lewy bodies/Parkinson’s disease with dementia (DLB/PDD, n = 35), frontotemporal dementia (FTD, n = 12), and vascular dementia (VaD, n = 22). Biomarker diagnostic accuracies and cutoff points for the diagnosis of CJD were calculated, and associations between Nfl and t-tau concentrations with other fluid biomarkers, demographic, genetic, and clinical data in CJD cases were assessed. Additionally, the value of Nfl and t-tau predicting disease survival in CJD was evaluated. Results Among diagnostic groups, highest plasma Nfl and t-tau concentrations were detected in CJD (fold changes of 38 and 18, respectively, compared to HC). Elevated t-tau was able to differentiate CJD from all other groups, whereas elevated Nfl concentrations were also detected in NND-Dem, AD, DLB/PDD, FTD, and VaD compared to HC. Both biomarkers discriminated CJD from non-CJD dementias with an AUC of 0.93. In CJD, plasma t-tau, but not Nfl, was associated with PRNP codon 129 genotype and CJD subtype. Positive correlations were observed between plasma Nfl and t-tau concentrations, as well as between plasma and CSF concentrations of both biomarkers (p < 0.001). Nfl was increased in rapidly progressive AD (rpAD) compared to slow progressive AD (spAD) and associated to Mini-Mental State Examination results. However, Nfl displayed higher accuracy than t-tau discriminating CJD from rpAD and spAD. Finally, plasma t-tau, but not plasma Nfl, was significantly associated with disease duration, offering a moderate survival prediction capacity. Conclusions Plasma Nfl and t-tau are useful complementary biomarkers for the differential diagnosis of CJD. Additionally, plasma t-tau emerges as a potential prognostic marker of disease duration.


Author(s):  
Sadat Shafi ◽  
Archu Singh ◽  
Abdallah Mohammad Ibrahim ◽  
Noora Alhajri ◽  
Tareq Abu Izneid ◽  
...  

Neurology ◽  
2021 ◽  
pp. 10.1212/WNL.0000000000011774
Author(s):  
Lauren G. Friedman ◽  
Nicholas McKeehan ◽  
Yuko Hara ◽  
Jeffrey L. Cummings ◽  
Dawn C. Matthews ◽  
...  

Drug development for Alzheimer's disease and other neurodegenerative dementias, including frontotemporal dementia, has experienced a long history of phase 2 and phase 3 clinical trials that failed to show efficacy of investigational drugs. Despite differences in clinical and behavioral characteristics, these disorders have shared pathologies and common challenges in designing early-phase trials that are predictive of late-stage success. Here, we discuss exploratory clinical trials in neurodegenerative dementias. These are generally phase 1b or phase 2a trials that are designed to assess pharmacologic effects and rely on biomarker outcomes, with shorter treatment durations and fewer patients than traditional phase 2 studies. Exploratory trials can establish go/no-go decision points, support proof-of-concept and dose selection, and terminate drugs that fail to show target engagement with suitable exposure and acceptable safety profiles. Early failure saves valuable resources including opportunity costs. This is especially important for programs in academia and small biotechnology companies but may be applied to high-risk projects in large pharmaceutical companies to achieve proof-of-concept more rapidly at lower costs than traditional approaches. Exploratory studies in a staged clinical development program may provide promising data to warrant the substantial resources needed to advance compounds through late-stage development. To optimize the design and application of exploratory trials, the Alzheimer's Drug Discovery Foundation and the Association for Frontotemporal Degeneration convened an advisory panel to provide recommendations on outcome measures and statistical considerations for these types of studies and study designs that can improve efficiency in clinical development.


Sign in / Sign up

Export Citation Format

Share Document