sulfur tolerance
Recently Published Documents


TOTAL DOCUMENTS

167
(FIVE YEARS 29)

H-INDEX

26
(FIVE YEARS 6)

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8539
Author(s):  
Lijian Wang ◽  
Kang Zhang ◽  
Yi Qiu ◽  
Huiyun Chen ◽  
Jie Wang ◽  
...  

The sulfur-iodine (SI) cycle holds great promise as an alternative large-scale process for converting water into hydrogen without CO2 emissions. A major issue regarding the long-term stability and activity of the catalysts is their poor sulfur deactivation resistance in the HI feeding process. In this work, the effect of Ru addition for enhancing the activity and sulfur resistance of SiO2-supported Ni catalysts in the HI decomposition reaction has been investigated. The presence of H2SO4 molecules in the HI results in severe sulfur deactivation of the Ru-free Ni/SiO2 catalysts by blocking the active sites. However, Ni–Ru/SiO2 catalysts show higher catalytic activity without sulfur-poisoning by 25% and exhibit more superior catalytic performance than the Ru-free catalyst. The addition of Ru to the Ni/SiO2 catalyst promotes the stability and activity of the catalysts. The experimental trends in activity and sulfur tolerance are consistent with the theoretical modeling, with the catalytic activities existing in the order Ni/SiO2 < Ni–Ru/SiO2. The effect of Ru on the improvement in sulfur resistance over Ni-based catalysts is attributed to electronic factors, as evidenced by theory modeling analysis and detailed characterizations.


Catalysts ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1029
Author(s):  
Patrizia Frontera ◽  
Pier Luigi Antonucci ◽  
Anastasia Macario

The reforming of biofuels represents a promising technology for low carbon and renewable hydrogen production today. The core of the process is an active and stable catalyst, which can help to improve this technology and its efficiency. With this review, we aim to survey the more relevant literature on heterogeneous catalysts for the reforming of biofuels with improved sulfur tolerance. The review is structured into four main sections. Following the introduction, the fundamental aspects of sulfur poisoning are discussed. In the third section, the basic principles of the reforming of biofuels are reported, and finally, in the fourth section—the core of the review—recent progresses in the development of sulfur resistant catalysts are discussed, distinguishing the role of the metal (noble and non-noble) from that of the support.


2021 ◽  
Vol 125 (4) ◽  
pp. 2485-2491
Author(s):  
Jianzhou Wu ◽  
Kaimin Du ◽  
Jianwei Che ◽  
Shihui Zou ◽  
Liping Xiao ◽  
...  

Author(s):  
Ricardo Prada Silvy ◽  
Sathish Kumar Lageshetty

This contribution deals with about selective conversion of heavy gas oils into middle distillates fuels that meet ultra-low sulfur and aromatic compound quality standards by using a novel NiWRu/TiO2–γAl2O3 catalyst under typical hydrotreatment conditions. A diesel fuel fraction having sulfur, nitrogen and aromatics compound content of about 50 ppm, 10 ppm and 15 v%, respectively, was obtained when the reactor was operated at T = 370 °C, P = 12.4 MPa, LHSV = 0.5 h−1 and H2/hydrocarbon ratio = 800 Nm3/m3. Titanium and ruthenium additives used in the preparation of the NiWRu/TiO2–γAl2O3 catalyst, remarkably improved the catalytic activities for the hydrogenolysis, hydrogenation and hydrocracking reactions compared to the reference NiW/γAl2O3 catalyst. The coprecipitation of titanium and aluminum hydroxides produced a catalyst support having greater surface area, pore volume and surface acidity. An improvement in mechanical properties of the support extrudates was also observed. Characterization analysis by XPS, AUGER and XRD techniques of the TiO2–γAl2O3 support suggested the formation of an aluminum-titanate mixed phase (AlxTiyOz) having a non-well-defined stoichiometry. The NiW/TiO2–γAl2O3 and NiWRu/TiO2–γAl2O3 exhibited a greater surface dispersion of the supported nickel and tungsten species compared to the NiW/γAl2O3 catalyst. The promoter effect of ruthenium on the NiW bimetallic system caused a strong increase in both hydrogenolysis and hydrogenation reactions. Hydrodenitrogenation and hydrocracking reactions were also favored by the increase in the hydrogenation capacity and in the surface acidity of the catalyst. The highest conversion levels for all investigated reactions were obtained when the NiWRu/TiO2–γAl2O3 catalyst was prepared by co-impregnation of Ni and Ru in a second step. This catalyst showed sulfur tolerance properties when the reaction was conducted in the presence of different H2S partial pressures. The catalytic behavior of the NiWRu/TiO2–γAl2O3 catalyst was explained by the existence of a promoting effect between separated Ni and Ru sulfides species and the NiWS phase (dual mechanism).


ACS Omega ◽  
2020 ◽  
Vol 5 (45) ◽  
pp. 29593-29600
Author(s):  
Zhijian Wang ◽  
Guangyan Xu ◽  
Xin Liu ◽  
Tao Wei ◽  
Yunbo Yu ◽  
...  

Catalysts ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 927
Author(s):  
Xinhui Sun ◽  
Antonios Arvanitis ◽  
Devaiah Damma ◽  
Noe T. Alvarez ◽  
Vesselin Shanov ◽  
...  

A nanocrystalline chromium-doped ferrite (FeCr) catalyst was shown to coproduce H2 and multiwalled carbon nanotubes (MWCNTs) during water gas shift (WGS) reaction in a H2-permselective zeolite membrane reactor (MR) at reaction pressures of ~20 bar. The FeCr catalyst was further demonstrated in the synthesis of highly crystalline and dimensionally uniform MWCNTs from a dry gas mixture of CO and CH4, which were the apparent sources for MWCNT growth in the WGS MR. In both the WGS MR and dry gas reactions, the operating temperature was 500 °C, which is significantly lower than those commonly used in MWCNT production by chemical vapor deposition (CVD) method from CO, CH4, or any other precursor gases. Extensive ex situ characterizations of the reaction products revealed that the FeCr catalyst remained in partially reduced states of Fe3+/Fe2+ and Cr6+/Cr3+ in WGS membrane reaction while further reduction of Fe2+ to Fe0 occurred in the CO/CH4 dry gas environments. The formation of the metallic Fe nanoparticles or catalyst surface dramatically improved the crystallinity and dimensional uniformity of the MWCNTs from dry gas reaction as compared to that from WGS reaction in the MR. Reaction of the CO/CH4 mixture containing 500 ppmv H2S also resulted in high-quality MWCNTs similar to those from the H2S-free feed gas, demonstrating excellent sulfur tolerance of the FeCr catalyst that is practically meaningful for utilization of biogas and cheap coal-derived syngas.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Zhong He ◽  
Yating Xie ◽  
Yuan Wang ◽  
Jingjie Xu ◽  
Jiangjun Hu

Mercury pollution in the atmospheric environment is a matter of international concern. Mercury in coal-fired flue gas is the first human mercury emission source and has become the focus of national mercury pollution control. The catalytic performance of zerovalent mercury (Hg0) in coal-fired flue gas was studied by using manganese-cerium-aluminum oxide as catalyst. The effects of metal loading ratio, reaction temperature, calcination temperature, and O2 and SO2 concentration on the efficiency of Hg0 catalytic removal were investigated, and the Mn-Ce/γ-Al2O3 catalysts before and after the reaction were characterized by BET, SEM, XRD, and XPS to analyze the physicochemical properties of the samples. The results show that the mercury removal efficiency of the composite catalyst with Mn, Ce, and Al as the active component is higher than that of the single metal catalyst. The catalytic activity of Mn0.1Ce0.02Al is the best, the optimum reaction temperature is 150°C, the optimum calcination temperature is 400°C, and the O2 concentration in the conventional flue gas condition satisfies the effective oxidation of Hg0; SO2 in the flue gas can seriously inhibit the oxidation of Hg0.


Sign in / Sign up

Export Citation Format

Share Document