analogue gravity
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 19)

H-INDEX

12
(FIVE YEARS 3)

2021 ◽  
Vol 136 (10) ◽  
Author(s):  
Francesco Bajardi ◽  
Lucia Altucci ◽  
Rosaria Benedetti ◽  
Salvatore Capozziello ◽  
Maria Rosaria Del Sorbo ◽  
...  

AbstractWe test the validity of a possible schematization of DNA structure and dynamics based on the Chern–Simons theory, that is a topological field theory mostly considered in the context of effective gravity theories. By means of the expectation value of the Wilson Loop, derived from this analogue gravity approach, we find the point-like curvature of genomic strings in KRAS human gene and COVID-19 sequences, correlating this curvature with the genetic mutations. The point-like curvature profile, obtained by means of the Chern–Simons currents, can be used to infer the position of the given mutations within the genetic string. Generally, mutations take place in the highest Chern–Simons current gradient locations and subsequent mutated sequences appear to have a smoother curvature than the initial ones, in agreement with a free energy minimization argument.


2021 ◽  
Author(s):  
Francesco Bajardi ◽  
Lucia Altucci ◽  
Rosaria Benedetti ◽  
Salvatore Capozziello ◽  
Maria Rosaria Del Sorbo ◽  
...  

We test the validity of a possible schematization of DNA structure and dynamics based on the Chern-Simons theory, that is a topological field theory mostly considered in the context of effective gravity theories. By means of the expectation value of the Wilson Loop, derived from this analogue gravity approach, we find the point-like curvature of genomic strings in KRAS human gene and COVID-19 sequences, correlating this curvature with the genetic mutations. The point-like curvature profile, obtained by means of the Chern-Simons currents, can be used to infer the position of the given mutations within the genetic string. Generally, mutations take place in the highest Chern-Simons current gradient locations and subsequent mutated sequences appear to have a smoother curvature than the initial ones, in agreement with a free energy minimization argument.


Universe ◽  
2020 ◽  
Vol 6 (8) ◽  
pp. 105
Author(s):  
Manuele Tettamanti ◽  
Alberto Parola

We investigate the formation dynamics of sonic horizons in a Bose gas confined in a (quasi) one-dimensional trap. This system is one of the most promising realizations of the analogue gravity paradigm and has already been successfully studied experimentally. Taking advantage of the exact solution of the one-dimensional, hard-core, Bose model (Tonks–Girardeau gas), we show that by switching on a step potential, either a sonic, black-hole-like horizon or a black/white hole pair may form, according to the initial velocity of the fluid. Our simulations never suggest the formation of an isolated white-hole horizon, although a stable stationary solution of the dynamical equations with those properties is analytically found. Moreover, we show that the semiclassical dynamics, based on the Gross–Pitaevskii equation, conforms to the exact solution only in the case of fully subsonic flows while a stationary solution exhibiting a supersonic transition is never reached dynamically.


Author(s):  
P. W. Evans ◽  
K. P. Y. Thébault

To demarcate the limits of experimental knowledge, we probe the limits of what might be called an experiment. By appeal to examples of scientific practice from astrophysics and analogue gravity, we demonstrate that the reliability of knowledge regarding certain phenomena gained from an experiment is not circumscribed by the manipulability or accessibility of the target phenomena. Rather, the limits of experimental knowledge are set by the extent to which strategies for what we call ‘inductive triangulation’ are available: that is, the validation of the mode of inductive reasoning involved in the source-target inference via appeal to one or more distinct and independent modes of inductive reasoning. When such strategies are able to partially mitigate reasonable doubt, we can take a theory regarding the phenomena to be well supported by experiment. When such strategies are able to fully mitigate reasonable doubt, we can take a theory regarding the phenomena to be established by experiment. There are good reasons to expect the next generation of analogue experiments to provide genuine knowledge of unmanipulable and inaccessible phenomena such that the relevant theories can be understood as well supported. This article is part of a discussion meeting issue ‘The next generation of analogue gravity experiments’.


Author(s):  
Germain Rousseaux ◽  
Hamid Kellay

Here we review the way to build analogue space–times in open channel flows by looking at the flow phase diagram and the corresponding analogue experiments performed during the last years in the associated flow regimes. Thin films like the circular jump with different dispersive properties are discussed with the introduction of a brand new system for the next generation of analogue gravity experiments: flowing soap films with their capillary/elastic waves. This article is part of a discussion meeting issue ‘The next generation of analogue gravity experiments’.


Author(s):  
Miles P. Blencowe ◽  
Hui Wang

We describe how analogues of a Hawking evaporating black hole as well as the Unruh effect for an oscillatory, accelerating photodetector in vacuum may be realized using superconducting, microwave circuits that are fashioned out of Josephson tunnel junction and film bulk acoustic resonator elements. This article is part of a discussion meeting issue ‘The next generation of analogue gravity experiments’.


Author(s):  
Theo Torres

In 2016, the Nottingham group detected the rotational superradiance effect. While this experiment demonstrated the robustness of the superradiance process, it still lacks a complete theoretical description due to the many effects at stage in the experiment. In this paper, we shine new light on this experiment by deriving an estimate of the reflection coefficient in the dispersive regime by means of a Wentzel–Kramers–Brillouin analysis. This estimate is used to evaluate the reflection coefficient spectrum of counter-rotating modes in the Nottingham experiment. Our finding suggests that the vortex flow in the superradiance experiment was not purely absorbing, contrary to the event horizon of a rotating black hole. While this result increases the gap between this experimental vortex flow and a rotating black hole, it is argued that it is in fact this gap that is the source of novel ideas. This article is part of a discussion meeting issue ‘The next generation of analogue gravity experiments’.


Author(s):  
Jack Petty ◽  
Friedrich König

The photonic crystal fibre (PCF) is a unique medium giving us the opportunity to perform experiments in carefully chosen regimes with precision and control. Using PCFs, we can perform analogue gravity experiments to study the physics of Hawking radiation and related processes such as resonant radiation. We discuss the similarities and differences between these processes and experimentally investigate the limits of effects of this type, dis- covering a new regime of record efficiency. We measure a 60% energy conversion efficiency from a pump to a visible femtosecond pulse by the process of resonant radiation, and demonstrate its extraordinary tunability in wavelength and bandwidth. Beyond analogue gravity, these femtosecond visible pulses provide a desirable laser source useful across a variety of modern scientific fields. This article is part of a discussion meeting issue ‘The next generation of analogue gravity experiments’.


Sign in / Sign up

Export Citation Format

Share Document